竖井掘进机液体洗井系统及流场研究.pdf
硕士学位论文 竖井掘进机液体洗井系统及流场研究 Study on Liquid Cleaning System and Flow Field of Vertical Shaft Boring Machine 国家重点研发计划课题资助(2016YFC0600903) 作 者孟陈祥 导 师王衍森 研究员 中国矿业大学 二〇一九年五月 万方数据 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 万方数据 中图分类号 TD41 学校代码 10290 UDC 622 密 级 公开 中国矿业大学 硕士学位论文 竖井掘进机液体洗井系统及流场研究 Study on Liquid Cleaning System and Flow Field of Vertical Shaft Boring Machine 国家重点研发计划课题资助(2016YFC0600903) 作 者 孟陈祥 导 师 王衍森 申请学位 工学硕士 培养单位 力学与土木工程学院 学科专业 岩土工程 研究方向 钻井法凿井技术 答辩委员会主席 付厚利 评 阅 人 纪洪广 吴勇信 二〇一九年五月 万方数据 论文审阅认定书论文审阅认定书 研究生 孟陈祥 在规定的学习年限内,按照研究生培养 方案的要求,完成了研究生课程的学习,成绩合格;在我的指导下完 成本学位论文,经审阅, 论文中的观点、 数据、 表述和结构为我所认同, 论文撰写格式符合学校的相关规定, 同意将本论文作为学位申请论文 送专家评审。 导师签字 年 月 日 万方数据 致致 谢谢 光阴荏苒,我在矿大的硕士研究生学习生涯即将结束,这三年的学习生活不 仅充实,更有收获和成长。感谢陪我度过求学生涯中最美好时光的各位老师和同 学,借此机会向他们表达我最诚挚的谢意。 本文是在恩师王衍森研究员的殷切关怀和耐心指导下进行并完成的。 无论是 从选题的框架讨论, 还是数值模拟、 物理试验等过程, 恩师总是不厌其烦的指导, 使我克服了很多困难,并且最终顺利地完成了论文,我取得的每一点成绩都凝聚 着恩师的汗水和心血。恩师开阔的视野、严谨的治学态度、精益求精的工作作风 都深深地感染和激励着我,借此机会,我谨向恩师致以深深地谢意。 特别感谢杨维好老师对论文提出的宝贵建议以及焦宁、 陈政霖两位师弟在实 验过程中鼎力相助以及工作和生活中的帮助,情谊铭记在心。 感谢翟晓强、程文硕,谢宝、赵蒙等已毕业的同门师兄,在学习和生活上的 帮助。 感谢贾景波、 陈恩、 候翰林等师兄弟及地下工程试验室的张超、 李维亮同志, 没有他们的全力帮助,试验是很难顺利开展并按时完成。 感谢同级好友杨光照、棘怀海、章皖凯、赵仁文、张宇等三年学习与生活中 的帮助。 感谢课题组张文、张博、王宝生等三年学习与生活中的帮助。 感谢舍友朱艳州、郭磊、尹磊建三年来在学习和生活中给予的帮助。 感谢深部岩土力学与地下工程国家重点实验室提供的资源和环境。 感谢多年来一直在背后默默支持我的亲人和朋友。 最后,衷心感谢各位专家、教授和学者对本文的审阅和指导 我将在今后的工作、学习和生活中加倍努力,以期能获取更多成果来回报他 们、回报社会。再次感谢他们,祝他们一生幸福、安康。 万方数据 I 摘摘 要要 随着国民经济发展,资源开采的深度越来越大,立井开拓是深部固体矿产资 源开采的最主要开拓方式,而深立井建设成为是其首要环节。钻井法作为一种高 度机械化的建井方法,随着井深增大面临越来越多的难以克服的技术难题,在此 背景下,国内外高度重视竖井掘进机技术,并开展了相关研究。竖井掘进机施工 过程中,洗井排渣一直是难以解决的关键技术难题。为此,本论文研究提出了适 用于竖井掘进机的液体洗井排渣系统,并通过数值模拟与模型实验的方法,先后 开展了洗井系统硬件参数优化、洗井流场变化规律等问题的研究。 首先针对竖井掘进机洗井排渣面临的关键技术难点, 研究提出了更具针对性、 适用性的竖井掘进机液体洗井排渣方案 通过在掘进机迎头增设密封盘形成能容 纳具有一定压力洗井液体的密封舱;通过在刀盘上增设径向射流,提高钻井液的 径向流速;通过在排渣管内设置引射流,提高钻井液上返流速。基于此方案,建 立了洗井系统的简化模型,并对影响洗井流场的参数进行了初步分析。 其次,采用纯流场数值模型,以漫流层分布形态、系统能量损耗等为主要评 价指标,对刀盘形状、井底净空高度、射流口参数及引射流口参数等,开展了优 化研究,得到了洗井排渣系统较优的参数组合,为后续研究奠定了基础。 而后,基于流固耦合模型,以携岩率及清岩率为洗井效果的主要评价标准, 对钻井液的密度、粘度以及流量对洗井效果的影响展开了研究。研究表明钻井 液密度与清岩率呈线性正相关, 携岩率与钻井液密度大小亦为正相关但增幅渐缓; 钻井液流量与清岩率为正相关但增幅逐渐增大,携岩率规律相同;钻井液粘度对 清岩率及携岩率,则呈现随粘度增大,清岩率与携岩率均先减小后增大的规律。 最后,设计了竖井掘进机洗井系统模拟实验台,并通过模型实验台对钻头转 速及流量对洗井效果的影响进行研究。同时,将物理模拟实验结果与数值模拟计 算结果对比,检验数值模拟及物理实验结果的可靠性。研究表明清岩率与携岩 率随着转速增加逐渐提高,但增幅逐渐降低;清岩率与携岩率随流量变化规律相 同。在物理模拟转速为 4r/min,排渣管内流速为 1.4m/s 时,可以将井底岩屑完全 带出。此外,物理模拟中流量对携岩率及清岩率的影响规律与数值模拟所得规律 一致;在相近工况下,携岩率以及清岩率误差在 30左右,认为结果可靠。 该论文有图 114 幅,表 31 个,参考文献 98 篇。 关键词关键词竖井掘进机;液体洗井;流固耦合;射流;引射流;流场 万方数据 II Abstract With the development of the national economy, the depth of resource exploitation is getting larger and larger. Vertical shaft development is the most important development for deep solid mineral resources exploitation, and deep shaft construction is its primary link. As a highly mechanized shaft building , drilling faces more and more difficult technical problems as the well depth increases. Under this background, the full-face shaft boring machine technology is highly valued in China and abroad, and related research is carried out. In the construction process of full-face shaft boring machine, well washing and discharging slag has always been a key technical problem which is difficult to solve. To this end, this thesis proposes a liquid cleaning system suitable for full-face vertical shaft boring machines, and through numerical simulation and model test s, the hardware parameters optimization of the well washing system and the change law of the well flow field are successively carried out the study. Firstly, aiming at the key technical difficulties faced by vertical shaft boring machine for washing well and slag discharge, the research puts forward a more targeted and applicable well washing and slag discharge scheme for liquid cleaning it can accommodate a certain pressure by adding a sealing disc at the heading of the shaft boring machine. The sealing chamber of the well washing liquid; the radial flow velocity of the drilling fluid is increased by adding a radial jet on the cutter head; and the return flow rate of the drilling fluid is increased by providing a jet flow in the slag discharge pipe. Based on this scheme, a simplified model of the well washing system was established and the parameters affecting the washing flow field were analyzed. Secondly, the pure flow field numerical model is used, and the distribution pattern of cross flow layer and the energy loss of the system are taken as the main uation inds, carries out the optimization research on the shape of the cutterhead, the clearance height at the bottom of the well, the parameters of the jet port and the parameters of the jet port, and obtains the appropriate parameter combination of the well washing system, which lays the foundation for the follow-up study. Then, based on the fluid-solid coupling model, the influence of the density, viscosity and flow rate of the drilling fluid on the well washing effect was studied based on the main uation criteria of the rock carrying rate and the rock clearing rate. The research shows that the density of drilling fluid is linearly positively correlated with the 万方数据 III rock clearing rate. The rock carrying rate is also positively correlated with the density of drilling fluid, but the growth rate is slow. The flow rate of drilling fluid is positively correlated with the rock clearing rate, but the growth rate is gradually increasing, and the rock carrying rate law is the same; the viscosity of the drilling fluid on the rock clearing rate and the rock carrying rate are increased with the increase of viscosity, and the rock clearing rate and rock carrying rate are first decreased and then increased. Finally, the simulation test bench of the full-face shaft boring machine liquid washing system was designed, and the influence of the drilling speed and flow rate on the well washing effect was studied through the model test rig. At the same time, the results of physical simulation experiments are compared with numerical simulation results to test the reliability of numerical simulation and physical experiment results. The research shows that the rock clearing rate and the rock carrying rate increase with the increase of rotational speed, but the increase rate is gradually reduced; the rock clearing rate and the rock carrying rate are the same as the flow rate. When the physical simulation speed is 4r/min and the flow rate in the slag discharge pipe is 1.4m/s, the bottom cuttings can be completely taken out. In addition, the influence law of the flow rate on the rock carrying rate and the rock clearing rate in the physical simulation is consistent with the law obtained by numerical simulation; under similar working conditions, the error of the rock carrying rate and rock clearing rate is about 30, and the result is considered reliable. There are 114 figures, 31 tables and 98 references in this paper. Keywords vertical shaft boring machine; liquid cleaning ; fluid-solid coupling;jet; induced jet; flow field 万方数据 IV 目目 录录 摘摘 要要 .......................................................................................................................... I 目目 录录 ........................................................................................................................ IV 图清单图清单 .................................................................................................................... VIII 表清单表清单 ...................................................................................................................... XV 变量注释表变量注释表 ........................................................................................................... XVII 1 绪论绪论 ........................................................................................................................... 1 1.1 问题的提出 ............................................................................................................ 1 1.2 国内外研究历史及现状 ........................................................................................ 2 1.3 研究目标、方法与技术路线 .............................................................................. 13 2 竖井掘进机洗井系统的设计与研究模型简化竖井掘进机洗井系统的设计与研究模型简化 .................................................... 16 2.1 概述 ...................................................................................................................... 16 2.2 竖井掘进机洗井系统存在问题 .......................................................................... 16 2.3 竖井掘进机洗井系统初步设计 .......................................................................... 17 2.4 研究模型简化及几何参数确定 .......................................................................... 21 2.5 本章小结 .............................................................................................................. 24 3 竖井掘进机液体洗井系统纯流场的数值模拟优化竖井掘进机液体洗井系统纯流场的数值模拟优化 ............................................ 25 3.1 概述 ...................................................................................................................... 25 3.2 射流数值模拟方法简述 ...................................................................................... 25 3.3 假设条件 .............................................................................................................. 25 3.4 建模、计算模型选取与边界条件 ...................................................................... 26 3.5 单因素研究及结果分析 ...................................................................................... 28 3.6 本章小结 .............................................................................................................. 54 4 竖井掘进机液体洗井的流固耦合数值模拟研究竖井掘进机液体洗井的流固耦合数值模拟研究 ................................................ 55 4.1 概述 ...................................................................................................................... 55 4.2 假设条件 .............................................................................................................. 55 4.3 建模、计算模型选取与边界条件 ...................................................................... 55 4.4 单因素研究及结果分析 ...................................................................................... 57 4.5 本章小结 .............................................................................................................. 71 5 竖井掘进机液体洗井实验台设计及物理模拟实验竖井掘进机液体洗井实验台设计及物理模拟实验 ............................................ 73 万方数据 V 5.1 概述 ...................................................................................................................... 73 5.2 相似准则推导 ...................................................................................................... 73 5.3 实验台设计 .......................................................................................................... 75 5.4 实验步骤 .............................................................................................................. 86 5.5 实验方案 .............................................................................................................. 90 5.6 实验结果及分析 .................................................................................................. 91 5.7 本章小结 .............................................................................................................. 96 6 结论与展望结论与展望 ............................................................................................................ 98 6.1 主要结论 .............................................................................................................. 98 6.2 展望 ...................................................................................................................... 98 参考文献参考文献 .................................................................................................................. 100 作者简介作者简介 .......... .106 学位论文原创性声明学位论文原创性声明....107 学位论文数据集学位论文数据集....108 万方数据 VI Contents Abstract ...................................................................................................................... III Contents .................................................................................................................... VII List of Figures ......................................................................................................... VIII List of Tables ............................................................................................................ XV List of Variables .................................................................................................... XVII 1 Introduction ............................................................................................................... 1 1.1 Question Raised ....................................................................................................... 1 1.2 Review of Research ................................................................................................. 2 1.2 Research Object and Content ................................................................................. 13 2 Designing and Model Simplification of Vertical Shaft Boring Washing System ......................................................................................................................... 16 2.1 Introduction ............................................................................................................ 16 2.2 Problems Existing in Vertical Shaft Boring Washing System ............................... 16 2.3 Designing of Vertical Shaft Boring Washing System ............................................ 17 2.4 Research Model Simplification and Geometric Parameter Determination ............ 21 2.5 Conclusion ............................................................................................................. 24 3 Study on Pure Flow Field in Liquid cleaning System of Vertical Shaft Boring Machine by Fluent ..................................................................................................... 25 3.1 Introduction ............................................................................................................ 25 3.2 Introduction of Jet Numerical Simulation ................................................ 25 3.3 Assumptions ........................................................................................................... 25 3.4 Modeling, Selection of Calculation Models and Boundary Conditions ................ 26 3.5 Univariate