采煤机螺旋滚筒截割含夹矸煤岩双向耦合作用机理及磨损特性研究.pdf
博士学位论文博士学位论文 采煤机螺旋滚筒截割含夹矸煤岩双向耦合作用 机理及磨损特性研究 Study on the Two-Way Coupling Mechanism and Wear Characteristics of Shearer Drum Cutting Coal-Rock with Gangue 作者姓名 金鑫 导师姓名 赵丽娟 教授 学科专业 机械设计及理论 研究方向 机械系统建模与仿真 完成日期 2020 年 8 月 20 日 辽宁工程技术大学 Liaoning Technical University 采 煤 机 螺 旋 滚 筒 截 割 含 夹 矸 煤 岩 双 向 耦 合 作 用 机 理 及 磨 损 特 性 研 究 金 鑫 辽 宁 工 程 技 术 大 学 图分类号 TD421 学校代码 10147 UDC 621 密 级 公开 辽宁工程技术大学 博士学位论文博士学位论文 采煤机螺旋滚筒截割含夹矸煤岩双向耦合作用 机理及磨损特性研究 Study on the Two-Way Coupling Mechanism and Wear Characteristics of Shearer Drum Cutting Coal-Rock with Gangue 作者姓名 金鑫 学 号 471710008 导师姓名 赵丽娟(教授) 副导师姓名 (教授) 申请学位 工学博士学位 培养单位 机械工程学院 学科专业 机械设计及理论 研究方向 机械系统建模与仿真 二○二○年八月 致致 谢谢 回首昔日艰辛的求学之路,点点滴滴至今铭记,不禁感叹时光易逝,韶华难追。自踏 入辽宁工程技术大学至今,近十年的学习生活,收获的不仅是知识,更是人生的感悟。所 谓十年寒窗苦,如今即将苦尽甘来,心生百味却不知从何讲,唯有感恩眼前,梦怀远方。 初入博一之时, 对学习新领域知识感到困惑与无助, 幸得恩师赵丽娟教授的指引与帮 助,为学生在茫茫学海点亮一座灯塔,确定了研究课题。撰写论文之期,感谢恩师于百忙 之中的耐心指导,无论是对论文整体结构的把握,还是一字一句细节之处的考究,恩师在 学术上的造诣及态度实乃大家,学生深感自愧不如。正如古人云师者传道受业解惑也, 恩师更是学生的人生导师, 恩师的嘉言懿行让学生备受教诲。 特别是在 “抗疫” 特殊时期, 恩师更是给了学生无比温暖的关怀, 利用网络通讯手段为学生指导论文, 关心学生的身心 健康。千言万语道不尽学生心中的感激与敬爱,学生无以为报,在此,谨以短短几行文字 表达对恩师的无尽谢意,向恩师道一句,您辛苦了 学习生活满是困难与挑战, 温暖有力的同门之谊给了我极大的动力与决心。 在此特别 感谢刘旭南师兄、刘宏梅师姐、李明昊师兄、范佳艺师姐、闻首杰、王雅东、尚祖恩、孙 国强、陈洋、张波、崔旭东等以及未提到名字的实验室所有兄弟姐妹。得遇如此志同道合 的亲友更是学习之外的一大幸事,你们是我人生中最宝贵的财富。 重如泰山的父母恩情更是不能忘。儿时不懂读书的意义,越长大越明白,此乃为中华 之崛起,实现大我价值,亦是为报父母之爱,满足小我之欲。如今父母已两鬓斑白,面容 苍老,乌鸦尚知反哺,何况身为长女,更是急切的渴望毕业工作,为父母分忧担责,与父 母同享天伦之乐。在此,发自肺腑的致一声爸爸、妈妈,女儿爱您们。 茫茫人海,渺小的我似一粒尘埃,漂浮于天地而遇见对的你。感谢并肩同行的赵国超 先生,与我同忧同乐。愿余生有人鲜衣怒马,陪你看烈焰繁花,愿余生有人素面白纱,陪 你度恬淡年华。感谢一路有你。 感谢国家自然科学基金项目 “夹矸煤岩高效截割滚筒落煤动力传递规律及结构进化理 论研究” (51674134)、辽宁省重点项目“采煤机螺旋滚筒激光增材再制造成形轨迹规划 与质量控制研究”(LJ2017ZL001)在科研上的支持与帮助。 感谢国内外学者提供的各类科研资料。 感谢评审专家的审阅与建议。 谨以此文表达对各位的谢意,略有仓促,若有不足之处,还望见谅。 I 摘摘 要要 螺旋滚筒是采煤机的工作机构, 承担着落煤和装煤两大任务, 与煤岩体间存在强烈的 耦合作用, 截齿和螺旋叶片的磨损不可避免, 特别是工作在含夹矸煤层的薄煤层采煤机螺 旋滚筒, 其摩擦损耗更为严重。 为研究采煤机螺旋滚筒截割含夹矸煤岩双向耦合作用机理 及磨损特性,提高采煤机螺旋滚筒的截割-磨损性能,以国家自然科学基金项目“夹矸煤 岩高效截割滚筒落煤动力传递规律及结构进化理论研究(51674134)”、辽宁省重点项目 “采煤机螺旋滚筒激光增材再制造成形轨迹规划与质量控制研究 (LJ2017ZL001) ” 及 “采 煤机螺旋滚筒辅助设计及载荷计算软件开发” 企业委托项目为支撑, 开展的主要研究工作 及取得的相关研究成果如下 依据煤岩物理、力学性质测试实验结果,采用单轴压缩、巴西劈裂模拟试验和神经网 络标定异形煤岩颗粒接触参数和粘结参数;联合 EDEM、RecurDyn 构建螺旋滚筒截割含 夹矸煤岩 DEM-MFBD (Discrete Element -Multi Flexible Body Dynamics) 耦合模型。 基于 DEM-MFBD 仿真研究螺旋滚筒截割含夹矸煤岩双向耦合作用机理及截齿、 螺旋 叶片磨损分布特点。采用单因素法分析煤岩抗压强度、滚筒结构参数、采煤机运动学参数 对螺旋滚筒磨损的影响规律。结果表明煤岩抗压强度由 30MPa 增至 50MPa,截齿和螺 旋叶片磨损深度平均增长率分别为 41.20和 19.51;采煤机牵引速度由 2m/min 提高至 6m/min,颗粒间接触载荷增加、煤流速度峰值平均减小率为 10.05、截齿和螺旋叶片磨 损深度平均增长率为 14.595和 11.12;滚筒转速由 70r/min 提高至 110r/min,颗粒间接 触载荷减小、煤流速度峰值平均增长率为 15.26、截齿磨损深度平均减小率为 14.57、 叶片磨损深度先增加后减小;滚筒沿竖直方向振动、绕其轴向晃动较为明显;齿尖及螺旋 叶片尾端存在明显应力集中,是螺旋滚筒易损部位。截割恶劣工况时,考虑磨损问题应优 先选用顺序式螺旋滚筒。采用响应面法分析采煤机牵引速度、滚筒转速、叶片螺旋升角和 齿尖半锥角对螺旋滚筒磨损影响的显著性及交互作用, 结果表明 牵引速度对螺旋滚筒磨 损影响最为显著,牵引速度与滚筒转速对截齿、螺旋叶片磨损影响的交互作用明显。 构造采煤机截割-磨损性能多目标优化模型,对采煤机牵引速度和滚筒转速进行分级 优化。通过主成分分析法(PCA)和概率神经网络(PNN)实现煤岩抗压强度等级识别。 基于矢量控制原理建立螺旋滚筒减磨高效截割的协同调速控制系统, 仿真结果表明 系统 能够对牵引速度和滚筒转速进行精准调控,调控误差均小于 5,且与传统牵引调速方式 相比,协同调速系统下采煤机具有更优的截割-磨损性能。论文的研究可为降低采煤机螺 旋滚筒摩擦损耗及自适应变速截割提供新的方法,具有一定的理论意义和工程应用价值。 该论文有图 121 幅,表 36 个,参考文献 147 篇。 关键词关键词螺旋滚筒;DEM-MFBD;双向耦合;磨损特性;响应面分析;协同调速 II Abstract Drum is the working mechanism of shearer, which undertakes two tasks of coal cutting and loading, and there is strong coupling behavior between drum and coal-rock. The wear of pick and blade is inevitable, especially in the thin coal seam with gangue, its friction loss is more serious. In order to study the two-way coupling mechanism and wear characteristics of drum cutting coal-rock with gangue, and to improve the cutting-wear perance of drum, supported by the project of National Natural Science Foundation of China “Study on dynamic transfer law and structure evolution theory of drum high-efficiency cutting coal-rock with gangue 51674134”, the key project of Liaoning province “Study on ing track planning and quality control of laser additive remanufacturing of shearer drum LJ2017ZL001” and the project of “Software development of shearer spiral drum aided design and load calculation”, the related research and achievements are as follows According to the test results of physical and mechanical properties of coal-rock, uniaxial compression, Brazilian splitting simulation test and neural network were used to calibrate the contact parameters and bonding parameters of irregular coal particles; combined with EDEM and RecurDyn, the DEM-MFBD Discrete Element -Multi Flexible Body Dynamics coupling model of drum cutting coal-rock with gangue was established. Based on DEM-MFBD simulation, the two-way coupling mechanism and the wear distribution characteristics of pick and blade in drum cutting coal-rock with gangue were studied. The single factor was used to analyze the influence of coal-rock compressive strength, drum structure parameters and shearer kinematics parameters on drum wear. The results show that when the compressive strength of coal-rock increases from 30MPa to 50MPa, the average growth rates of pick wear depth and blade wear depth are 41.20 and 19.51 respectively; the traction speed increases from 2m/min to 6m/min, the contact load between particles increases, the average decrease rate of peak coal flow velocity is 10.05, and the average increase rates of pick wear depth and blade wear depth are 14.595 and 11.12 respectively; the drum rotation speed increases from 70r/min to 110r/min, the contact load between particles decreases, the average increase rate of peak coal flow velocity is 15.26, the average decrease rate of pick wear depth is 14.57, and the blade wear depth increases first and then decreases. Drum vibrates along the vertical direction and shakes around its axial direction obviously. There is obvious stress concentration in the pick tip and the end of blade, which is the vulnerable part of drum. When cutting in bad working conditions, the sequential spiral drum III should be preferred in consideration of wear. Response surface was used to analyze the significance and interaction of traction speed, drum rotation speed, spiral angle and pick tip half cone angle on drum wear. The results show that the traction speed has the most significant effect on the wear of spiral drum, and the interaction of traction speed and drum rotation speed on the wear of pick and spiral blade is obvious. The multi-objective optimization model of cutting-wear perance of shearer was constructed, and the traction speed and drum rotation speed were optimized by grades. Principal component analysis PCA and probabilistic neural network PNN were used to identify the compressive strength of coal-rock quickly and accurately. Based on the principle of vector control, a coordinated speed control system of drum cutting with wear reducing and high efficiency was established and simulated. The results show that the coordinated speed control system can accurately control the traction speed and drum rotation speed, and the control errors are less than 5. Compared with the traditional traction speed regulation mode, the coordinated speed control system has better cutting-wear perance. The research of this paper can provide a new for reducing the friction loss of drum and adaptive variable speed cutting, which has certain theoretical significance and engineering application value. This paper has 121 figures, 36 tables, 147 references. Keywords shearer spiral drum; DEM-MFBD; two-way coupling; wear characteristics; response surface analysis; coordinated speed regulation IV 目目 录录 摘要摘要 ................................................................................................................................................. I 目录目录 .............................................................................................................................................. IV 图清单图清单 ....................................................................................................................................... VIII 表清单表清单 ......................................................................................................................................... XV 变量注释表变量注释表 ............................................................................................................................ XVIII 1 绪论绪论 ............................................................................................................................................. 1 1.1 课题来源 .................................................................................................................................. 1 1.2 课题背景及意义 ...................................................................................................................... 1 1.3 螺旋滚筒截割机理研究现状 .................................................................................................. 2 1.4 螺旋滚筒磨损问题研究现状 .................................................................................................. 3 1.5 离散元数值模拟研究现状 ...................................................................................................... 5 1.6 多柔体系统动力学研究现状 .................................................................................................. 6 1.7 论文主要研究内容及技术路线 .............................................................................................. 8 2 相关理论基础及螺旋滚筒力学模型相关理论基础及螺旋滚筒力学模型 ....................................................................................... 10 2.1 磨粒磨损理论基础 ................................................................................................................ 10 2.2 神经网络算法简介 ................................................................................................................ 12 2.3 带精英策略的快速非支配排序遗传算法简介 .................................................................... 14 2.4 螺旋滚筒力学模型 ................................................................................................................ 15 2.5 本章小结 ................................................................................................................................ 23 3 螺旋滚筒截割含夹矸煤岩耦合模型构建螺旋滚筒截割含夹矸煤岩耦合模型构建 ............................................................................... 24 3.1 含夹矸煤岩离散元模型参数标定 ........................................................................................ 24 3.2 含夹矸煤岩离散元模型构建 ................................................................................................ 34 3.3 滚筒截割煤岩耦合模型构建 ................................................................................................ 35 3.4 本章小结 ................................................................................................................................ 39 4 螺旋滚筒截割含夹矸煤岩双向耦合作用机理研究螺旋滚筒截割含夹矸煤岩双向耦合作用机理研究 ............................................................... 40 4.1 基于 DEM-MFBD 仿真煤壁动态特性分析 ......................................................................... 40 4.2 采煤机运动学参数对煤岩颗粒动态特性的影响研究 ........................................................ 49 4.3 螺旋滚筒动态特性研究 ........................................................................................................ 52 V 4.4 本章小结 ................................................................................................................................ 61 5 螺旋滚筒磨损特性研究螺旋滚筒磨损特性研究 ........................................................................................................... 63 5.1 基于 DEM-MFBD 耦合模型螺旋滚筒磨损仿真结果分析 ................................................. 63 5.2 螺旋滚筒磨损实验验证 ........................................................................................................ 69 5.3 煤层赋存条件对螺旋滚筒磨损影响规律研究 .................................................................... 69 5.4 滚筒结构参数对其磨损影响规律研究 ................................................................................ 70 5.5 采煤机运动学参数对螺旋滚筒磨损影响规律研究 ............................................................ 72 5.6 基于响应面法的螺旋滚筒磨损因素影响规律研究 ............................................................ 74 5.7 本章小节 ................................................................................................................................ 88 6 螺旋滚筒减磨高效截割的协同调速控制系统研究螺旋滚筒减磨高效截割的协同调速控制系统研究 ............................................................... 89 6.1 采煤机截割-磨损性能多目标优化 ....................................................................................... 89 6.2 基于 PCA-PNN 的煤岩抗压强度等级识别 ......................................................................... 96 6.3 协同调速控制系统原理 ...................................................................................................... 101 6.4 协同调速控制系统模型构建 .............................................................................................. 105 6.5 协同调速控制系统仿真分析 .............................................................................................. 109 6.6 本章小结 .............................................................................................................................. 113 7 结论、创新点及展望结论、创新点及展望 ............................................................................................................. 114 7.1 结论 ...................................................................................................................................... 114 7.2 创新点 .................................................................................................................................. 115 7.3 展望 ...................................................................................................................................... 115 参考文献参考文献 ..................................................................................................................................... 116 查新结论查新结论 ..................................................................................................................................... 124 作者简历作者简历 ..................................................................................................................................... 126 学位论文原创性声明学位论文原创性声明 ................................................................................................................. 127 学位论文数据集学位论文数据集 ......................................................................................................................... 128 VI Contents Abstract .......................................................................................................................................... I Contents ....................................................................................................................................... IV List of Figures .......................................................................................................................... VIII List of Tables ..............................................................................................................................