尾矿库坝体稳定性数值分析方法.pdf
文章编号 1673 - 193X2007 - 05 - 0011 - 05 尾矿库坝体稳定性数值分析方法 3 梁 力,李 明,王 伟,陈宝智 东北大学 资源与土木工程学院,沈阳 110004 摘 要分别选用极限平衡法中的瑞典圆弧法、 毕肖普法和简布法,有限元法与极限平衡法结合的 方法以及有限元强度折减法,应用ANSYS软件对某尾矿坝进行了静力稳定性数值分析。通过应用 不同方法对尾矿坝的静力稳定性计算,得出了此尾矿坝的稳定安全系数和可能滑动面形状,结果 表明数值方法在尾矿库坝体稳定计算中具有显著优势,结果能直观而有效的反映尾矿坝的稳定 性。 关键词安全评价;尾矿坝;静力稳定; ANSYS 中图分类号TD8 文献标识码A Numerical analysis of tailing dam stability LIANGLi , LI Ming , WANGWei , CHEN Bao2zhi School of Resources ailing dam; static stability; ANSYS 收稿日期 2007 - 03 - 15 作者简介梁力1955 , 男,教授,博士生导师。 3 基金项目辽宁省自然科学基金环境保护与矿山综合 治理研究2004308002资助 1 引言 尾矿库是一座人为形成的高位泥石流危险源, 非煤矿山的重大危险源。据有关资料统计,到20世 纪末,在我国的众多矿山中处于正常工作状态的尾 矿库不足70 。有的行业大约44 的尾矿库处于 险、 病、 超期服务状态[1]。因此,对尾矿库进行安全 评价具有重要的现实意义。尾矿库的安全评价包括 许多内容,例如尾矿坝的静力稳定性、 动力稳定性 等,其中尾矿坝的静力稳定性分析尤为重要。 本文选用了传统的极限平衡方法和数值方法, 应用有限元软件ANSYS对某尾矿坝进行了静力稳 定性计算,对不同方法的计算结果进行了对比分析。 2 工程概况 某尾矿坝绝对标高41811m ,坝顶绝对标高 437m ,坝高19m左右。坝顶宽14m ,坝长约113m ,基 第3卷 第5期 2007年10月 中 国 安 全 生 产 科 学 技 术 Journal of Safety Science and Technology Vol. 3 No.5 Oct. 2007 本坝体由砂石混合料堆筑。二期子坝为上游水力冲 击法堆积,目前子坝约11级,每级高2m。根据部标 上游法尾矿坝堆积坝工程地质勘察规范Y BJ11 - 86 附录尾矿坝等级标准,划分此尾矿坝等级为四级。 图1为该尾矿坝新尾砂堆坝坝体全景图。图2 为该坝体剖面图。表1为该坝坝体材料的计算参数。 图1 尾矿库坝体 图2 坝体剖面 表1 物理力学参数 编 号 材料 名称 重力密度 kN/ m 压缩模量 MPa 泊松 比 粘聚力 kPa 内摩擦角 1尾粉砂1814101901341224 2尾粉土191510140135231820 3冰层16124150140516 4天然土201071201354023 3 尾矿坝静力稳定性分析 在尾矿坝的静力稳定性分析时,需要给出安全 系数和可能滑动面的形状及位置。解决这些问题的 常用方法是极限平衡方法和数值方法[2~3]。 311 尾矿坝静力稳定性计算的极限平衡法 极限平衡法中常用的是瑞典圆弧法、 毕肖普法 和简布法。在对此尾矿坝进行极限平衡法分析时, 选用大型有限元计算软件ANSYS中的土木工程模 块。此模块中的岩土模块可以直接进行经典方法 瑞典圆弧法、 毕肖普法和简布法和有限元法的尾 矿坝安全系数的计算以及最危险滑动面的确定,并 且可以考虑地下水等因素。 应用此模块进行尾矿坝安全系数计算的主要步 骤如下 1启动ANSYS并激活土木模块,按照表1数 值添加材料属性并选择平面单元PLANE42 ,在单元 选项中指定为平面应变问题。 2根据图2建立有限元分析模型,对模型进行 网格划分。有限元网格图如图3所示。 图3 尾矿库坝体有限元网格图 3定义尾矿坝的边坡界限和圆弧中心搜索范 围。图4中矩形区域ABCD即为圆心搜索范围,其 中AD、BC边分9份,AB、DC边分12份。 4定义圆弧面的切线范围,如图4中的梯形区 域EFGH所示,其中EH、FG边分为15份。 图4 尾矿坝圆心以及圆弧切线范围定义 5添加水位线。 6用此模块中的结果后处理器可直接查看各 个滑动面的位置、 圆心及半径,安全系数的大小等信 息。图5为原尾砂堆层滑动面位置,按经典方法计 算的安全系数列于表2前3项。 图5 表2 尾矿坝静力稳定安全系数 工 况瑞典圆弧法 毕肖普法 简布法有限元法 原尾砂堆层11143114321124511329 表2计算结果表明,尾矿坝的安全系数较低,瑞 21 中 国 安 全 生 产 科 学 技 术 第3卷 典圆弧法计算的结果未能达到规范要求的最小安全 系数1115 ,需要对此尾矿坝进行必要的加固处理。 从计算过程可以看出,采用经典的极限平衡法 进行尾矿坝稳定性计算时,需要定义圆心搜索范围 以及圆弧切线范围,并且未考虑到尾矿坝稳定和变 形之间关系。 312 尾矿坝静力稳定性计算的数值方法 31211 有限元法与极限平衡法结合 首先采用有限元分析法,计算坝体内的应力应 变以及位移分布,将有限元计算的应力分布结果,通 过应力张量变换,求出指定滑动面上的应力分布; 然后通过极限平衡方法的概念,求出与该滑动面对 应的稳定性安全系数。该方法计算步骤如下 1对坝体进行有限元分析。根据有限元法计 算的平面问题应力场,将破坏面划分为若干个微段, 然后求出各微段中心点的应力值σx 、 σ y 和τ xy。 2求出微段的正应力和剪应力。如果破坏面 与水平面的倾角为θ,则此破坏面上的正应力σ ni和 剪应力τi可由下列两个公式计算 σni 1 2 σxσy 1 2 σx-σycos2θτxysin2θ1 τiτxycos2θ 1 2 σy-σxsinθ2 3根据莫尔-库仑理论计算各点的抗剪强度。 4求安全系数F。对破坏面上所有点的抗剪 强度和剪应力分别求和,得到总抗剪强度和总剪切 力。则安全系数F可以按照式3求出。 F ∑ c iσnitanφiΔli ∑ τ iΔli 3 式中,Δli 微段长度;ci 内聚力;φi 内摩擦角。 应用ANSYS的土木模块求解尾矿坝稳定性的 主要步骤如下 1进行尾矿坝的静力稳定性有限元计算。计 算选用平面应变单元PLANE42 ,边界条件为底边固 定约束,左右两边为水平约束,仅考虑重力荷载。 2定义尾矿坝的边坡界限和圆弧中心搜索范 围。图4中矩形区域ABCD即为圆心搜索范围,其 中AD、BC边分9份,AB、DC边分12份。 3定义圆弧面的切线范围,如图4中的梯形区 域EFGH所示,其中EH、FG边分为15份。 4添加水位线。 5在土木模块后处理器中选择边坡稳定设置 选项,指定计算类型为”FEM”,进行求解,即可求得 有限元法尾矿坝静力稳定安全系数。计算结果列于 表2中。典型滑动面如图5所示。 可以看出此法计算的结果大于瑞典圆弧法。该 法能够反映出尾矿坝稳定和变形之间的关系,又能 用工程界所熟悉的单一安全系数来评价其稳定 性[4]。但是仍然需要预先指定滑动面的位置以及大 小等信息。 31212 有限元强度折减法 所谓强度折减法[5~6]就是在理想弹塑性有限元 计算中将边坡岩体抗剪切强度参数逐渐降低直至其 达到破坏状态为止,程序可以自动根据弹塑性计算 结果得到破坏滑动面塑性应变和位移突变地带 , 同时得到边坡的强度储备安全系数ω。于是有 c′ c/ω, tan φ ′ tanφ/ω4 式中,c 材料的粘聚力;φ 内摩擦角。 应用有限元强度折减法分析坝体失稳的一个关 键问题是如何根据有限元的计算结果来判别坝体是 否达到极限破坏状态。目前的失稳判据主要有两 类以有限元数值计算不收敛作为失稳的标志;以 广义塑性应变或者等效塑性应变从坝脚到坝顶贯通 作为坝体破坏的标志。文献[7]在研究边坡时认为以 有限元计算是否收敛作为边坡破坏的依据是合理 的。类似地,本文以有限元计算是否收敛作为判断 尾矿坝的失稳判据。 应用强度折减法求解尾矿坝静力稳定安全系数 时,选用ANSYS的基本模块,根据广义米塞斯准则 F αI1J2 k5 式中,I1, J2分别为应力张量第一不变量和应力偏 张量的第二不变量;α, k为与岩土材料内摩擦角φ 和黏聚力c有关的常数。 在对此尾矿坝进行计算时分别选用D - P1准则 和D - P3准则。与D - P1准则对应的α, k分别为 α 2sinφ 33 - sinφ ,k 6ccosφ 33 - sinφ 6 与D - P3准则对应的α, k分别为 α sinφ 3 ,kccosφ7 ANSYS中的D - P模型需要输入3个参数,内 摩擦角φ、 黏聚力c和膨胀角Ψ。当 Ψ 0时对应 非关联流动法则,当 Ψφ时对应关联流动法则。 31第5期 中 国 安 全 生 产 科 学 技 术 对于岩土材料,不符合传统的塑性位势理论,即塑性 势函数与屈服函数不等。当采用莫尔-库仑一类剪 切屈服作屈服面时,如果采用关联流动法则,将会导 致出现远大于实际的剪胀变形[8]。所以对于岩土类 材料宜选用非关联流动法则,本文选用非关联流动 法则进行尾矿坝稳定计算。 有限元强度折减法求解尾矿坝静力稳定安全系 数的主要步骤如下 1 建立尾矿坝的有限元模型, 输入材料参数以及边界条件。2指定初始稳定系 数ω。3求解选项设置并进行有限元计算。4判 断计算结果是否收敛。如果收敛则将 ω 值增加 Δ ω,继续进行计算,如果不收敛则ω即为所求的安 全系数。 图6为采用D - P1准则和D - P3准则计算的 尾矿坝坝顶水平位移与折减系数ω之间的关系曲 线。当ω1 1156和 ω3 1117时,坝顶位移发生突 变,有限元计算不收敛。因此依据D - P1准则和D - P3准则计算的尾矿坝静力稳定安全系数分别为 1156和1117。可以看出采用D - P3准则计算的安 全系数小于采用D - P1准则计算的安全系数,且与 传统的瑞典圆弧法求得的安全系数非常接近。 图6 坝体位移与折减系数曲线 图7 用有限元强度折减法得到的滑动面形状 图7为采用D - P1准则和D - P3准则计算的 尾矿坝滑动面形状。两种准则下的滑动面形状基本 一致,并且与图4所示的传统方法求得的危险滑动 面相近。可以看出,在采用有限元强度折减法进行 稳定计算时可以直接求出危险滑动面形状,并且考 虑了稳定与变形之间的关系。 根据计算结果可以看出,该尾矿坝的存在一定 隐患,如果原尾砂堆层坝体发生坝体滑落等破坏现 象,则易引起新尾砂堆层坝体稳定安全系数的降低。 在现场勘查中已发现原尾砂堆层坝体有局部冲刷与 涌水等现象,如图8所示。建议对原尾砂堆坝坝体 进行加固处理。 图8 尾矿坝冲刷部位 4 结论 1采用大型有限元程序ANSYS ,对尾矿坝进行 极限平衡方法、 有限元法和极限平衡法结合的方法 以及有限元强度折减法的稳定分析是可行的。 2应用极限平衡法进行稳定系数计算时,不能 考虑到坝体稳定与变形之间的关系。采用有限元法 与传统方法相结合的方法,可以考虑稳定与变形之 间的关系,然而仍需假定滑动面形状以及圆心位置。 3采用有限元强度折减法进行尾矿坝稳定求 解时,不但可以考虑坝体稳定与变形之间关系,同时 可以直接给出危险滑动面,而无须事先假设圆弧滑 动面半径以及圆心位置。 4应用有限元强度折减法进行尾矿坝稳定计 算时,选用不同D - P准则,会有不同的安全系数, 其中D - P3准则的计算结果更加接近传统方法中 的瑞典圆弧法。求得的圆弧滑动面也与传统方法所 求得相近。 41 中 国 安 全 生 产 科 学 技 术 第3卷 5在对尾矿坝的静力稳定分析中,数值方法不 但可以考虑到稳定与变形的关系,而且能直接求得 滑动面。因此数值方法在求解尾矿坝稳定问题中具 有显著优势。建议在进行尾矿坝稳定分析时,除了 进行传统的方法计算分析外,还要进行有限元法的 分析计算。 参考文献 [1] 李全明,王云海,廖国礼.尾矿库安全评价中的科学问 题及评价方法探讨[J ].中国安全生产科学技术,2006 ,2 6 [2] 祝玉学,戚国庆,鲁兆明,等.尾矿库工程分析与管理 [M].北京冶金工业出版社,1999.171~244 [3] 钱家欢,殷宗泽.土工原理与计算[M].北京中国水利 水电出版社,199615.491~593 [4] 曾亚武,田伟明.边坡稳定性分析的有限元法与极限平 衡法的结合[J ].岩石力学与工程学报,2005 ,242 [5] 郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中 的应用[J ].岩石力学与工程学报, 2004 ,19 [6] Dawson E. M, Roth W H, Drescher A. Slope stability anal2 ysis by strength reduction[J ]. Geotechnique , 1999 , 496 835~840 [7] 赵尚毅,郑颖人,张玉芳.有限元强度折减法中边坡 失稳的判据探讨[J ].岩土力学.2004 ,261 163~168 [8] 郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北 京中国建筑工业出版社,2002 欢迎订阅 中国安全生产科学技术 中国科技核心期刊 美国化学文摘收录 国家安全生产监督管理总局主管 中国安全生产科学研究院主办 中国安全生产科学技术双月刊定位于 “国家级安全生产科学领域的权威性期刊”,编委会由中国工 程院院士 9 名和正高级职称专家、 学者、 学科带头人及各行业有影响的安全管理专家组成,是中国科技核 心期刊,被美国化学文摘CA、 中国期刊网CNKI等数据库全文收录。 主要栏目学术论著、 现代安全技术与管理安全工程、 卫生工程、 安全管理、 安全评价、 体系认证等、 信 息与动态等。读者对象安全生产领域专家、 科研人员,大专院校安全工程专业及相关专业师生,安全生产监 督、 监察人员,各行业如道路交通、 矿山、 机械、 消防、 石油、 石化、 钢铁、 建筑、 电子、 纺织、 核电及服务业等的安 全管理、 工程技术和相关人员,注册安全工程师和安全评价师、 职业健康安全管理体系审核员、 咨询师等以及 与安全有关的专业人员。 刊号CN 11 - 5335/ TB ,ISSN 1673 - 193X,CODEN ZASK BO。大16开,140页,全年6期,90元。 电话、 传真01064941258 网址www. chinasafety. ac. cn E- mail oshms chinasafety. ac. cn jsst chinasafety. ac. cn 最新安全资讯 先进安全科学技术理论和方法 现代安全管理理念和方法 最新安全标准和法律法规 权威国家政策信息注册安全工程师、 安全评价、 体系认证等 全国各地邮局均可订阅邮发代号82 - 379 ,编辑部常年办理订阅手续。全年费用仅90元。 邮局汇款地 址北京市朝阳区惠新西街17号1210室100029 单位名称中国安全生产科学技术 编辑部 银行汇款开户银行中国工商银行北京惠新支行 户 名中国安全生产科学研究院 帐 号 0200006309021900155 51第5期 中 国 安 全 生 产 科 学 技 术