柱形高效矿物颗粒分级设备研制及分级试验研究.pdf
分类号 密 级 U D C 学 号 6120180231 硕硕 士士 学学 位位 论论 文文 20212021 年年 5 5 月月 2222 日日 柱形柱形高效高效矿物颗粒分级设备研制及分级试验研究矿物颗粒分级设备研制及分级试验研究 The Development and Research on High-efficient Cylindrical Classifying Equipment of Mineral Particles 学学 位位 类类 别别 工学硕士工学硕士 作作 者者 姓姓 名名 杨杨 旺旺 学学 科科 专专 业业 矿物加工工程矿物加工工程 指指 导导 教教 师师 胡海祥胡海祥((副教授副教授)) 研研 究究 方方 向向 矿物矿物加工理论与工艺加工理论与工艺 万方数据 江西理工大学硕士学位论文 独创性声明 I 学位论文独创性声明 本人声明所呈交的论文是本人在导师指导下进行的研究工作及取得的研究成果。据 我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过 的研究成果,也不包含已获得江西理工大学或其他教育机构的学位或证书而使用过的材 料。与我一同工作的同志对本研究所做的任何贡献均已在论文中做了明确的说明并表示谢 意。 申请学位论文与资料若有不实之处,本人承担一切相关责任。 研究生签名 时间 年 月 日 学位论文版权使用授权书 本人完全了解江西理工大学关于收集、保存、使用学位论文的规定即学校有权 保存按要求提交的学位论文印刷本和电子版本,学校有权将学位论文的全部或者部分 内容编入有关数据库进行检索,并采用影印、缩印或扫描等复制手段保存、汇编以供 查阅和借阅;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子 版。本人允许本学位论文被查阅和借阅,同意学校向国家有关部门或机构送交论文的 复印件和电子版,并通过网络向社会公众提供信息服务。 保密的学位论文在解密后适用本授权书 学位论文作者签名(手写) 导师签名(手写) 签字日期 年 月 日 签字日期 年 月 日 万方数据 江西理工大学硕士学位论文 摘要 II 摘摘 要要 颗粒的分级(筛分)工序广泛存在于矿业、冶金、环境、化工等领域,其作业精度 和效率是调控的重要参数。在矿业领域,分级(筛分)设备通常与磨矿设备串联使用形 成磨矿分级闭路工艺,水力旋流器、螺旋分级机等水力分级设备普遍存在分级精度不 准等问题,高频细筛、直线振动筛等筛网分级设备普遍存在筛面磨损严重、易堵孔等问 题。本文将筛网分级与水力分级的优点相结合,研制了一种柱形高效矿物颗粒分级设备 (简称旋流分级柱) ,该设备的优点在于用柱形筛网控制颗粒的分级尺寸,用叶片推动 的脉冲流体提高颗粒透筛效率,较大幅度的提高了颗粒的分级精度和效率。 研制的旋流分级柱主要由动力装置、中心旋转轴、叶片、柱形柱体、柱形筛网、粗 细颗粒排矿管、补加水管与给矿管等组成。电机外接配置调频器,用于调节中心轴旋转 速度;叶片焊接固定在中心旋转轴上,每层叶片由圆周上均匀分布的三支叶片组成,柱 形柱体采用透明材料制成。 首先研究旋流分级柱分级效率的影响因素及其耦合关系。在分级试验中,对操作因 素、结构因素和给矿因素进行研究。静态试验表明颗粒在短时间内即可达到分级平衡, 静态分级试验中 5s 时间内,颗粒分级已基本完成,此后颗粒分级效率提升幅度很小; 给 矿浓度增大时,分级效率降低;叶片转速≥900rpm 时,分级效率上升幅度很小并趋于一 种平衡状态。连续分级试验表明在加矿速度较小时分级效率不随分级浓度变化;加矿速 度的增大时,分级效率降低,但仍具有较高的分级效率,如在连续分级试验中,矿浆浓 度为 30时,E量0.25mm最高为 88.37,最低为 82.04。 其次通过高速相机观测试验研究清水在旋流分级柱内的走向、形态、紊流区域和矿 物颗粒在旋流分级柱内的运动状态。结果表明叶片转速增大,推力越大,流体的流速越 快,紊流更剧烈;叶片 δ 方位角的作用在于推动流体向外向上运动,δ 越大流体运动方 向越垂直于筛网,但 δ 越大,叶片尖端离筛网距离也大,叶片后方的吸力空间越小,吸 力减弱;叶片 γ 方位角的作用在于推动流体向前向上运动,γ 越大对流体的推动作用也 越大,同时叶片后方的吸力也越大。 最后根据分级试验结果和高速相机观测结果,提出旋流分级柱分级理论假说在叶 片旋转的圆周方向上,叶片旋转的机械能传递给矿浆,叶片前方(正面)推动矿浆往前 运动,叶片后方(背面)对矿浆产生回吸作用,这种推动回吸作用诱导矿浆中的颗粒 反复穿梭于筛网内外侧,促进和强化颗粒的松散、渗析和穿透作用,提高了颗粒的分级 效率。 万方数据 江西理工大学硕士学位论文 摘要 III 通过上述研究,优化了旋流分级柱的结构,确认了旋流分级柱分级的有利条件,提 出了旋流分级柱分级理论假说,为旋流分级柱在选矿领域的分级研究奠定基础。 关键词关键词旋流分级柱;叶片方位角;中心转轴;分级效率;压力梯度力;分级理论 万方数据 Abstract IV Abstract The process of particle classification is widely used in mining, metallurgy, environmental, chemical industry, and other fields, which operational precision and efficiency is an important parameter of regulation. In the mining field, classification screening equipment is usually used in series with grinding equipment to a grinding----classification closed circuit process. In general, Hydraulic classification equipment such as hydrocyclone and spiral classifier have problems such as inaccurate classification accuracy, and screen classification equipment such as high-frequency fine screen and linear vibrating screen have problems such as serious screen surface wear and easy to plug screen hole. In this paper, the author invents a cylindrical high- efficient mineral particle classification equipment Eddying Classification Column, which combines the advantages of screen classification and hydraulic classification. It has the capability to control the size of particle classification with cylindrical screen and to improve the efficiency of the particle passing through screen with pulsed fluid by the blade, hence the precision and efficiency of particle classification are greatly improved. The equipment developed by the author mainly consists of power unit, central rotating shaft, blade, cylindrical cylinder, cylindrical screen, coarse and fine grain ore drainage pipe, supplementary water pipe and ore feed pipe, etc. Moreover, the motor is connected with a frequency modulator, which is used to adjust the rotation speed of the central shaft and the blade is welded and fixed on the central rotation axis. Each layer of the blade is composed of three evenly distributed blades on the circumference and the cylindrical column is made of transparent material. Firstly, in this paper, the author studies the influence factors of vortex Eddying Classification Column efficiency and its coupling relationship. Static test shows that particle classification could be achieved with balance in a short time and particle classification has been basically completed in five seconds, then the improvement of particle classification efficiency is very small. Besides, static test shows that the efficiency of mineral particle classification decreases when the adding speed of slurry increases; It also shows that classification efficiency increases slightly and tends to a stable state when blade speed is greater than or equal to 900 rpm. And the continuous classification test shows that classification efficiency does not change with classification concentration when ore adding speed is relatively small. With the increase 万方数据 Abstract V of ore adding speed, the classification efficiency decreases rapidly, but it still has a high classification efficiency. For example, in the continuous classification test, when the pulp concentration is 30, the maximum value of E(quantity 0.25mm) is 88.37, and the minimum value is 82.04. Secondly, the author studies the trend, shape, turbulent region of water and the motion state of mineral particle in Eddying Classification Column by high-speed camera observation experiments. It shows that blade rotation speed increases, thrust is larger and the faster the flow, the more turbulent it is. The role of azimuth Angle δ of blades is to push the fluid outward and upward. The greater δ is, the more perpendicular the direction of fluid movement is to the screen. However, the greater δ is, the greater the distance between blade tip and screen is, the smaller the suction space on the back of blades is, and the weaker the suction. The role of blade azimuth γ is to promote the fluid forward and upward movement, the greater the γ is, the greater the driving effect of the fluid is, and the greater the suction force on the back is. Finally, according to classification experiment results and observation results of high- speed camera, the author puts forward a hypothesis about the classification theory of Eddying Classification Column in the circumferential direction of blade rotation, the mechanical energy of blade rotation will be transferred to pulp, and blade positive push ahead pulp movement forward, while the rear of the blade has a back suction effect on the pulp. Because this push- suction action allows the pulp particles to shuttle back and forth between the inside and outside of the screen, which can promote and strengthen the loosening, dialysis and penetration of particles, thus the equipment has a higher classification efficiency. Through the above research, the author optimizes the structure of Eddying Classification Column and confirms its favorable conditions in classification. Above all, the author puts forward a hypothesis about the classification theory of it, which can lay a foundation for the classification research of the equipment in the field of mineral processing. Key words Eddying Classification Column; blade azimuth; central shaft; classification efficiency; pressure-gradient force; classification theory 万方数据 江西理工大学硕士学位论文 目录 VI 目录目录 摘 要 ......................................................................................................................................... I Abstract .................................................................................................................................... IV 第一章 绪 论 ............................................................................................................................ 1 1.1 研究背景与意义 ......................................................................................................... 1 1.2 国内外研究现状 ......................................................................................................... 2 1.2.1 筛网分级理论的研究进展 ............................................................................... 2 1.2.2 旋流分级理论研究进展 ................................................................................... 6 1.2.3 筛网与旋流分级结合一体设备研究 ............................................................. 10 1.3 研究内容 ................................................................................................................... 12 1.4 创新点 ....................................................................................................................... 12 第二章 试验设备、方法与计算公式 .................................................................................... 13 2.1 矿样来源与制备 ....................................................................................................... 13 2.2 试验设备 ................................................................................................................... 14 2.3 分级试验条件与流程 ................................................................................................ 15 2.3.1 静态分级试验 ................................................................................................. 16 2.3.2 连续分级试验 ................................................................................................. 17 2.4 分级效率计算公式 ................................................................................................... 19 2.5 旋流分级柱中水流状态的判断 ............................................................................... 21 第三章 旋流分级柱的制造与试验可调控因素 .................................................................... 22 3.1 旋流分级柱的制造 ................................................................................................... 22 3.1.1 旋流分级柱研制历程 ..................................................................................... 22 3.1.2 旋流分级柱设备构造 ..................................................................................... 23 3.1.3 不同试验选用的旋流分级柱及其部件 ......................................................... 26 3.2 旋流分级柱分级试验的调控参数 ........................................................................... 26 3.2.1 操作参数对分级效果的影响 ......................................................................... 27 3.2.2 结构参数对分级效果的影响 ......................................................................... 27 3.3 本章小结 ................................................................................................................... 28 万方数据 江西理工大学硕士学位论文 目录 VII 第四章 旋流分级柱静态分级试验研究 ................................................................................ 29 4.1 筛网孔径(0.25mm)静态分级试验 ....................................................................... 29 4.1.1 叶片方位角(δ25,γ10)静态分级试验 ............................................. 29 4.1.2 叶片方位角(δ25,γ15)静态分级试验 ............................................. 42 4.1.3 叶片 γ 方位角对分级效率的影响 ................................................................. 46 4.2 筛网孔径(0.15mm)静态分级试验 ....................................................................... 47 4.2.1 叶片方位角(δ25,γ10)静态分级试验 ............................................. 47 4.2.2 叶片方位角(δ25,γ15)静态分级试验 ............................................. 53 4.2.3 叶片 γ 方位角对分级效率的影响 .................................................................. 57 4.3 筛网孔径对分级效率的影响 ................................................................................... 58 4.4 本章小结 ................................................................................................................... 59 第五章 旋流分级柱连续分级试验研究 ................................................................................ 60 5.1 叶片方位角(δ25,γ10)连续分级试验研究 ................................................. 60 5.1.1 中心轴转速对分级效率的影响 ..................................................................... 60 5.1.2 给矿浓度对分级效率的影响 ......................................................................... 62 5.1.3 加矿速度对分级效率的影响 ......................................................................... 63 5.1.4 分级时间的计算与量效率关系 ..................................................................... 67 5.1.5 加矿速度与分级时间预测 ............................................................................. 68 5.2 叶片方位角(δ25,γ15)连续分级试验研究 ................................................. 69 5.2.1 中心轴转速对分级效率的影响 ..................................................................... 69 5.2.2 给矿浓度对分级效率的影响 ......................................................................... 70 5.2.3 加矿速度对分级效率的影响 ......................................................................... 72 5.2.4 分级时间的计算与量效率关系 ..................................................................... 76 5.2.5 加矿速度与分级时间预测 ............................................................................. 77 5.3 叶片方位角 γ 对分级效率的影响 ............................................................................ 78 5.4 静态分级与连续分级试验对比 ............................................................................... 79 5.5 本章小结 ................................................................................................................... 80 第六章 旋流分级柱分级机理与理论假说 ............................................................................ 81 6.1 高速相机观测试验 ................................................................................................... 81 6.1.1 高速相机观测清水运动试验 ......................................................................... 81 6.1.2 高速相机观察颗粒运动试验 ......................................................................... 86 万方数据 江西理工大学硕士学位论文 目录 VIII 6.2 旋流分级柱分级理论假说 ....................................................................................... 94 6.3 本章小结 ................................................................................................................... 98 第七章 结论与展望 ................................................................................................................ 99 7.1 结论 ........................................................................................................................... 99 7.2 展望 ......................................................................................................................... 100 参 考 文 献 .......................................................................................................................... 101 致 谢 .................................................................................................................................... 105 附录 攻读硕士学位期间研究成果 ...................................................................................... 106 万方数据 第一章 绪 论 1 第一章第一章 绪绪 论论 1.1 研究背景与意义研究背景与意义 颗粒的分级(筛分)工序广泛存在于矿业、冶金、环境、化工等领域,其作业精度 和效率是调控的重要参数。在矿业领域,分级(筛分)设备通常与磨矿设备串联使用形 成磨矿分级闭路工艺,然而在磨矿分级闭路工艺中常见因分级精度不准、分级效率 不高而导致循环负荷增大,造成粗粒欠磨,细粒过磨等问题。提高磨矿分级闭路作业 的分级精度,可减少溢流夹粗的含量,精确控制最优可选粒度,优化粒度级配;提高分 级效率,可减少沉砂夹细的含量,降低返砂量(循环负荷) ,进而提高磨机处理量,降低 磨矿成本和渣浆泵能耗等指标。常见分级(筛分)作业原理与装备如表 1