自激振荡脉冲射流破岩性能研究.pdf
博士学位论文 自激振荡脉冲射流破岩性能研究 Rock Breaking Perance of Self-Excited Oscillating Pulsed Waterjet 作 者李洪盛 导 师刘送永教授 中国矿业大学 二○二○年七月 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 万方数据 中图分类号 TD421 学校代码 10290 UDC 622 密 级 公开 中国矿业大学 博士学位论文 自激振荡脉冲射流破岩性能研究 Rock Breaking Perance of Self-Excited Oscillating Pulsed Waterjet 作 者 李洪盛 导 师 刘送永 教授 申请学位 工学博士学位 培养单位 机电工程学院 学科专业 机械设计及理论 研究方向 机械/液力破岩机理 答辩委员会主席 林明星 评 阅 人 二○二○年七月 万方数据 致谢致谢 时光荏苒,如白驹过隙,回首中国矿业大学五年博士研究生生涯无限感慨, 此刻,种种情景犹如镜头快放般的从脑中一闪而过,其中有亢奋、有激动,但更 多的,还是感激在这五年博士研究生生涯中我遇到了很多良师益友,他们有的 是我人生路上的引导者,有的是我人生路上一段旅途的同行人,在这里我衷心地 对五年里遇到的良师益友说一声谢谢。 首先我要真诚的感谢我的导师刘送永教授。导师为人谦和,平易近人,他优 秀的做人品质、严谨的治学态度和开拓创新的精神将激励和影响我的一生。从论 文选题、研究内容和试验方法的确定到论文撰写、修改和定稿,自始至终都得到 了导师的悉心指导和帮助,凝结了导师的心血和智慧。在学习过程中,导师总以 精益求精的态度和一丝不苟的作风要求我,对我精心点拨、指点迷津,帮助我解 决了诸多疑惑和问题,同时,在生活中,导师给予我无微不至的关怀和帮助。在 此,谨向我的导师刘送永教授致以崇高的敬意和衷心的感谢 感谢课题组教授、 杜长龙教授、 李建平教授及江红祥副教授等在学术张永忠 研究过程中给予的帮助与支持, 感谢他们在我学术上遇到疑惑时给予的热情解答。 感谢师兄刘晓辉博士、付林博士、姬会福博士、纪云博士、崔玉明博士、常 欢欢硕士、韩栋栋硕士在我学术启蒙期给予我的帮助与指引,也让我在枯燥的研 究生生活中感受到师门的关怀与温暖;感谢周方跃博士、黄举硕士、马浩硕士、 商港硕士、贾继光硕士、徐盼盼硕士、贾新庆硕士、姚健硕士、赵明硕士在试验 过程给予的建议与意见;感谢课题组刘增辉博士、胡修坤博士、谢奇志博士、张 德义博士、陈源源硕士、段新奇硕士、程刚硕士、陈跃强硕士、刘浩硕士、刘洋 洋硕士等在课题研究过程中给予的帮助; 感谢研究生期间给予我帮助和陪伴的所 有领导、老师、同学以及朋友,感谢你们的帮助,也衷心的祝福你们越来越好。 感谢江苏中机矿山设备有限公司及徐州哈德机电装备有限公司在试验过程 中给予的帮助。 感谢远在家乡的父母的养育之恩和自始至终默默无闻的付出, 你们永远是我 最坚强的后盾。感谢亲朋好友的奉献和支持,你们无微不至的关怀,是我迷茫困 惑时的灯塔,让我积极乐观,勇敢无畏。 最后,感谢各位专家在百忙之中审阅我的论文,并提出宝贵的指导意见和建 议。在此,谨向各位专家表示衷心的谢意。 万方数据 I 摘摘 要要 针对硬岩巷道掘进工作面岩石破碎效率低以及机械刀具磨损严重等问题, 综 合运用岩石破碎理论、弹性波动力学理论以及流固耦合理论,并结合数值模拟以 及试验研究,开展自激振荡脉冲射流破岩性能研究,旨在揭示岩石在自激振荡脉 冲射流作用下的破坏机理, 探寻自激振荡喷嘴结构参数以及运行参数对截割载荷 和机械刀具温度的影响规律,为提高硬岩巷道掘进装备破岩效率提供科学依据。 以流体力学为基础,建立自激振荡脉冲射流的频域相似网络模型,研究自激 振荡脉冲射流振荡机理、幅频特性及其产生条件,定性分析系统自激振荡装置结 构参数及流体参数对射流振荡特性的影响规律;其次,基于冲击波理论建立水射 流冲击破岩波动方程,分析脉冲水射流破岩裂纹扩展机理;进而,采用断裂力学 建立脉冲水射流辅助机械刀具破岩数学模型, 分析机械刀具在有无水射流辅助情 况下的载荷分布特性,并建立水射流辅助机械刀具破岩时刀具温升理论公式,探 究自激振荡脉冲射流对于机械刀具的冷却效果。 为探究自激振荡脉冲射流产生微观机理与结构参数对脉冲射流振荡性能影 响规律,建立不同结构尺寸的自激振荡喷嘴物理流场数值模型,并在相同工况下 进行自激振荡脉冲射流喷嘴出口处的流量测试试验, 验证数值模拟对自激振荡性 能预测的可靠性; 结合数值模拟探究自激振荡脉冲射流涡环演化过程及其对脉冲 射流速度的影响,进一步揭示自激振荡脉冲射流形成过程及微观机理;最后,分 析自激振荡喷嘴结构参数及系统压力对脉冲射流振荡性能的影响, 为自激振荡脉 冲射流喷嘴的设计提供依据。 为揭示自激振荡脉冲射流破岩裂纹扩展微观机理,采用 SPH-FEM 耦合算法 建立连续水射流及脉冲水射流冲击破岩数值模型, 并利用相同工况下的射流破岩 试验验证数值模型的有效性及准确性; 从微观角度分析脉冲水射流冲击破岩过程, 包括粉碎区的产生、裂纹的萌生及扩展,揭示脉冲水射流冲击下的岩石裂纹扩展 机理、损伤演化过程以及应力传播与衰减规律;研究不同脉冲振幅、脉冲频率和 围压下岩石的破碎机理及性能, 为自激振荡脉冲水射流辅助机械刀具破岩性能研 究提供指导。 为获得自激振荡脉冲射流的结构参数、系统压力、冲击靶距和岩样特性与岩 石破碎形貌、破碎体积、比能耗的变化规律,基于高压水射流试验系统开展自激 振荡脉冲射流破岩性能试验研究,探究岩石破碎过程中射流流态演化过程,掌握 岩石起始破碎压力以及起裂压力与岩石抗压强度的关系, 指出岩石破裂形貌与冲 击靶距之间的变化趋势,并通过正交试验获得岩石破碎性能最佳参数组合,为自 激振荡脉冲射流辅助机械刀具破岩性能研究提供技术指导。 为分析自激振荡脉冲射流辅助机械刀具破岩性能研究过程中截割载荷与刀 万方数据 II 具温度的变化趋势, 利用高压水射流破岩系统以及单齿截割破岩试验系统研究射 流系统压力、振荡腔腔长、截面锥角以及横移速度对机械刀具降载减磨特性的影 响规律,试验结果表明自激振荡脉冲水射流具有减少机械刀具截割载荷的作用, 也具备降低温度进而减少机械刀具磨损的能力。 该论文有图 125 幅,表 10 个,参考文献 178 篇。 关键词关键词脉冲射流;破岩性能;裂纹扩展;流场特性;机械刀具 万方数据 III Abstract Rock breaking theory, elastic wave dynamics theory and fluid structure coupling theory are synthetically used to solve the problems of low rock breaking efficiency and serious wear of conical pick in the heading face of hard rock roadway. Rock breaking perance of self-excited oscillating pulsed waterjet SOPW is carried out combined with numerical simulation and experimental research, aiming to reveal the rock failure under the impact of SOPW. In addition, the aim is to explore the influence of structural parameters of self-excited oscillation nozzle and operating parameters on cutting load and cutting tool temperature, which can provide scientific basis for improving the rock breaking efficiency of driving equipment for hard rock. Based on hydrodynamics, the frequency domain similar network model of SOPW is established firstly, to investigate the oscillation mechanism, amplitude frequency characteristics and generating conditions of SOPW. In addition, the influence rules of structural parameters and fluid parameters of self-excited oscillation device on the oscillation characteristics of jet are qualitatively analyzed. Secondly, based on the shock wave theory, the wave equation of water jet rock breaking is established, and the crack propagation mechanism during rock breaking by SOPW is analyzed. Furthermore, the mathematical model of rock breaking by conical pick assisted with SOPW is established by using fracture mechanics, to explore the load distribution characteristics of conical pick with and without the assistace of waterjet. Moreover, the theoretical ula of conical pick temperature assisted with waterjet during the rock breaking process is established to explore the cooling effect of waterjet on mechanical conical pick. In order to explore the micro mechanism of SOPW and the influence rule of structural parameters on the oscillation perance of pulsed jet, a numerical model of physical flow field of self-excited oscillation nozzle with different structural dimensions was established. And the flow test at the outlet of self-excited oscillation pulsed jet nozzle was carried out under the same working condition to verify the reliability of numerical simulation on the prediction of self-excited oscillation perance. Combined with numerical simulation, the evolution process of vortex ring and its influence on the velocity of SOPW are explored, and the ation process as well as the micro mechanism of SOPW is further revealed. Finally, the influence of structural parameters and system pressure on the oscillation perance of pulsed waterjet is analyzed, which provides the basis for the design of self-excited 万方数据 IV oscillation pulsed jet nozzle. Numerical model of rock breaking by continuous water jet and SOPW is established based on finite element FEM combined with smoothed particle hydrodynamics SPH, and the validity and accuracy of the numerical model are verified by the rock breaking test under the same working condition. Microscopic analysis of rock breaking process by SOPW, including the ation of the crushing zone, the crack initiation and propagation of cracks, are observed. And the mechanism of rock crack growth, damage evolution, stress propagation and attenuation under the impact of SOPW are also revealed. Furthermore, the mechanism and rock breaking perance with different pulse amplitudes, pulse frequencies and confining pressures are investigated, which provides guidance for the study of rock breaking perance of conical pick assisted with SOPW. In order to obtain the effects of different structural parameters, system pressures, standoff distances of SOPW and rock sample characteristics on rock rock breaking morphology, rock breaking volume and specific energy consumption, experimental study on rock breaking perance of SOPW is conducted based on high pressure water jet test system. With the aim to explore the evolution process of jet flow pattern during the of rock breaking process, and to master the relationship of initial crushing pressure, fracture pressure varies with the rock compressive strength. In addition, the change trend between rock breaking morphology and standoff distance is pointed out, and the best parameter combination of rock breaking perance is obtained through orthogonal test, which provides technical guidance for the research of rock breaking perance of conical pick assisted with SOPW. Using high-pressure water jet rock breaking system and single pick rock cutting test system, the influence of system pressure of waterjet, cavity length, section cone angle and traverse speed on the characteristics of load and friction reduction of conical pick is studied. And the aim is to analyze the changing trend of cutting load and temperature of conical pick during the rock breaking process assisted with SOPW. The results of test show that SOPW can reduce the cutting load and the temperature as well as the wear of conical pick. The dissertation has 125 figures, 10 tables and 178 references. Keywords pulsed waterjet; rock breaking perance; crack propagation; flow field characteristics; conical pick 万方数据 V 目目 录录 摘摘 要要............................................................................................................................ I 目目 录录........................................................................................................................... V 图清单图清单......................................................................................................................... IX 表清单表清单.......................................................................................................................XVI 变量注释表变量注释表 ............................................................................................................ XVII 1 绪论绪论............................................................................................................................ 1 1.1 课题来源 ................................................................................................................. 1 1.2 研究背景及意义 ..................................................................................................... 1 1.3 水射流辅助机械刀具破岩概述 ............................................................................. 3 1.4 国内外研究现状 ..................................................................................................... 7 1.5 已有研究存在的问题 ........................................................................................... 18 1.6 主要研究内容 ....................................................................................................... 18 2 自激振荡脉冲射流辅助机械刀具破岩理论研究自激振荡脉冲射流辅助机械刀具破岩理论研究 ................................................. 21 2.1 自激振荡脉冲射流振荡特性分析 ....................................................................... 21 2.2 脉冲射流破岩理论研究 ....................................................................................... 31 2.3 机械刀具破岩理论研究 ....................................................................................... 35 2.4 脉冲射流辅助机械刀具破岩理论研究 ............................................................... 38 2.5 本章小结 ............................................................................................................... 42 3 自激振荡脉冲射流流场特性分析自激振荡脉冲射流流场特性分析 ......................................................................... 43 3.1 自激振荡脉冲射流剪切层的不稳定性 ............................................................... 43 3.2 自激振荡腔的几何模型和网格划分 ................................................................... 45 3.3 数值模型校验 ....................................................................................................... 47 3.4 数值模拟结果分析 ............................................................................................... 50 3.5 本章小结 ............................................................................................................... 68 4 自激振荡脉冲射流破岩机理及性能数值模拟研究自激振荡脉冲射流破岩机理及性能数值模拟研究 ............................................. 69 4.1 自激振荡脉冲射流冲击破岩数值模型 ............................................................... 69 4.2 本构模型及材料参数 ........................................................................................... 70 4.3 自激振荡脉冲射流冲击下岩石损伤演化规律 ................................................... 76 4.4 自激振荡脉冲射流冲击下岩石破坏机理 ........................................................... 81 4.5 自激振荡脉冲射流破岩性能 ............................................................................... 84 4.6 本章小结 ............................................................................................................... 91 万方数据 VI 5 自激振荡脉冲射流破岩性能试验研究自激振荡脉冲射流破岩性能试验研究 ................................................................. 93 5.1 自激振荡脉冲射流破岩试验系统及方案 ........................................................... 93 5.2 自激振荡脉冲射流冲击破岩的流态演化 ........................................................... 97 5.3 自激振荡脉冲射流冲击破岩性能 ..................................................................... 101 5.4 最佳破岩性能参数组合 ..................................................................................... 111 5.5 本章小结 ............................................................................................................. 114 6 自激振荡脉冲射流辅助机械刀具破岩性能研究自激振荡脉冲射流辅助机械刀具破岩性能研究 ............................................... 117 6.1 试验系统及方案 ................................................................................................. 117 6.2 自激振荡脉冲射流辅助机械刀具破岩过程分析 ............................................. 118 6.3 自激振荡脉冲射流预裂隙对机械刀具降载减磨特性的影响 ......................... 121 6.4 本章小结 ............................................................................................................. 131 7 结论与展望结论与展望 ........................................................................................................... 133 7.1 主要结论 ............................................................................................................. 133 7.2 创新点 ................................................................................................................. 135 7.3 展望 ..................................................................................................................... 136 参考文献参考文献 ................................................................................................................... 137 作者简历作者简历 ................................................................................................................... 149 学位论文原创性声明学位论文原创性声明 ............................................................................................... 151 学位论文数据集学位论文数据集 ....................................................................................................... 152 万方数据 VII Contents Abstract ...................................................................................................................... III Contents .................................................................................................................... VII List of Figures ............................................................................................................ IX List of Tables ...........................................................................................................XVI List of Variables .................................................................................................... XVII 1 Introduction ............................................................................................................... 1 1.1 Source of Subject ..................................................................................................... 1 1.2 Research Background and Significance ...........................