圆锥破碎机层压破碎腔形优化及工艺参数研究.pdf
. 博博 士士 学学 位位 论论 文文 DOCTORAL DISSERTATION 论文题目 圆锥破碎机层压破碎腔形优化 及工艺参数研究 作者姓名 张子龙 学科专业 机械设计及理论 指导教师 任廷志 教授 2019 年年 5 月月 万方数据 万方数据 中图分类号TD451 学校代码10216 UDC622 密级公开 工学博士学位论文工学博士学位论文 圆锥破碎机层压破碎腔形优化 及工艺参数研究 博 士 研 究 生张子龙 导师任廷志 教授 申请学位工学博士 学科专业机械设计及理论 所属学院机械工程学院 答 辩 日 期2019 年 5 月 授 予 学 位 单 位燕山大学 万方数据 万方数据 A Dissertation in Machinery Design and Theory RESEARCH ON OPTIMIZATION OF INTER-PARTICLE BREAKAGE CRUSHING CHAMBER AND PROCESS PARAMETERS OF CONE CRUSHER by Zhang Zilong Supervisor Professor Ren Tingzhi Yanshan University May, 2019 万方数据 万方数据 燕山大学博士学位论文原创性声明 本人郑重声明此处所提交的博士学位论文圆锥破碎机层压破碎腔形优化及 工艺参数研究,是本人在导师指导下,在燕山大学攻读博士学位期间独立进行研 究工作所取得的成果。论文中除已注明部分外不包含他人已发表或撰写过的研究成 果。对本文的研究工作做出重要贡献的个人和集体,均已在文中以明确方式注明。 本声明的法律结果将完全由本人承担。 作者签字 日期 年 月 日 燕山大学博士学位论文使用授权书 圆锥破碎机层压破碎腔形优化及工艺参数研究系本人在燕山大学攻读博士 学位期间在导师指导下完成的博士学位论文。本论文的研究成果归燕山大学所有, 本论文的研究内容不得以其它单位的名义发表。本人完全了解燕山大学关于保存、 使用学位论文的规定,同意学校保留并向有关部门送交论文的复印件和电子版本, 允许论文被查阅和借阅。本人授权燕山大学,可以采用影印、缩印或其它复制手段 保存论文,可以公布论文的全部或部分内容。 保密□,在 年解密后适用本授权书。 本学位论文属于 不保密□。 请在以上相应方框内打“√” 作者签名 日期 年 月 日 导师签名 日期 年 月 日 万方数据 万方数据 摘 要 - I - 摘 要 圆锥破碎机是散体物料破碎工艺流程中不可或缺的关键设备之一,广泛应用于 矿山行业、建筑行业、化工行业及冶金行业等核心支柱行业中。然而,由于缺乏对 圆锥破碎机性能的深入研究,圆锥破碎机设计往往过于追求单一指标,使现有圆锥 破碎机设备无法兼顾破碎性能、破碎产品质量及破碎腔衬板耗损等诸多要求,导致 圆锥破碎机综合性能较低,无法为设备使用单位创造更多经济效益。因此,通过研 究圆锥破碎机破碎腔内散体物料运动特性、散体物料层压破碎行为机理及破碎腔衬 板磨损规律,建立圆锥破碎机生产率、破碎产品粒度分布与粒形质量及破碎腔衬板 恒定磨损特性的圆锥破碎机性能多目标规划模型,为研制开发具有自主知识产权的 高能、层压、恒定磨损特性的新型圆锥破碎机奠定理论基础,具有重要的理论意义 与实用价值。 通过分析圆锥破碎机动锥衬板运动特性,探究了动锥衬板既绕圆锥破碎机中心 轴旋摆运动又绕其自身中心轴自转运动对破碎腔内散体物料下落行为的影响,研究 了考虑动锥衬板复合运动的圆锥破碎机散体物料运动特性,进而分析了圆锥破碎机 阻塞层散体物料下落与上拱运动特性,建立了更为准确的圆锥破碎机生产率模型, 可对具有不同结构参数与工艺参数的圆锥破碎机生产率进行预测,为提高圆锥破碎 机破碎性能提供理论支持。 为精确描述散体物料层压破碎行为,采用散体物料层压破碎模拟试验对圆锥破 碎机破碎腔内散体物料层压破碎行为进行研究,引入了粒度相对系数用于描述不同 粒度散体物料破碎行为的差异性,提出了粒形转化函数用于表征散体物料层压破碎 过程中立方状与针片状散体物料的粒形转化行为,建立了散体物料双粒形循环层压 破碎操作模型,并对圆锥破碎机破碎腔内散体物料动态破碎过程进行数值模拟及破 碎产品粒度分布与粒形质量进行预测,为改善圆锥破碎机破碎产品质量提供理论基 础。 通过散体物料层压破碎压力模拟试验,研究了圆锥破碎机破碎腔内散体物料破 碎压力特性,分析了圆锥破碎机破碎腔衬板表面破碎压力分布规律,建立了圆锥破 碎机破碎腔衬板磨损模型,并基于该模型提出了圆锥破碎机破碎腔衬板恒定磨损设 计准则,可降低由于破碎腔衬板磨损变形对圆锥破碎机破碎产品质量的影响,为延 万方数据 燕山大学工学博士学位论文 - II - 长圆锥破碎机破碎腔衬板使用寿命提供理论支持。 基于圆锥破碎机生产率模型、散体物料双粒形循环层压破碎操作模型及破碎腔 衬板恒定磨损设计准则建立了圆锥破碎机性能多目标规划模型,根据圆锥破碎机结 构参数与工艺参数确定了设计变量与约束条件,采用序列二次规划法对多目标规划 模型进行求解,从而获得了集高能、层压、恒定磨损特性的圆锥破碎机破碎腔结构 参数与工艺参数。基于以上研究内容对唐山某矿业公司某型号圆锥破碎机性能进行 优化,将新型圆锥破碎机破碎腔衬板与工艺参数上线运行,测得优化后圆锥破碎机 生产率提高了 16.9,取得了良好的工业效果。 关键词圆锥破碎机;生产率;层压破碎;粒形转化;恒定磨损;多目标规划 万方数据 Abstract - III - Abstract Cone crusher is one of the key equipment for particle material crushing with applications in mining, construction, chemical industry, metallurgy, etc. However, due to the lack of further study on the perance of cone crusher, the existing cone crusher is often designed to achieve one of the satisfactory technical indicators, and unable to obtain excellent comprehensive perance including the crushing perance, the product quality and the chamber liner wear, which results in low efficiency and effectiveness in the process of material crushing. Therefore, it is necessary to analyze the particle material movement characteristics in the crushing chamber of cone crusher, study the mechanism of inter-particle breakage behavior, investigate the wear law of the crushing liner, establish a multi-objective programming model for cone crusher to obtain excellent comprehensive perance, and lays a theoretical foundation for the development of cone crusher with independent intellectual property rights and high energy, inter-particle breakage and constant wear characteristic, which is of important theoretical significance and practical value. By analyzing the motion characteristics of the mantle in the cone crusher, the influence of compound rotation of the mantle on the falling behavior of particle materials in the crushing chamber was studied and the movement characteristics of particle materials in cone crusher considering the compound motion of mantle were studied. The movement characteristics of materials in the chock level were investigated. In order to provide theoretical support for crushing perance improvement of cone crusher, a productivity model of higher accuracy for cone crusher was established. In order to describe the inter-particle breakage behavior accurately, the inter-particle breakage of particle materials in the crushing chamber was investigated by simulation test. The relative coefficient of particle size was introduced to describe the difference of the crushing behavior of particle materials with different particle sizes. A particle shape transation function was proposed to explain the shape transation behavior between the cubic and the flaky particle materials during crushing. The operation model of 万方数据 燕山大学工学博士学位论文 - IV - inter-particle breakage was established, and the dynamic crushing process of particle materials in the crushing chamber of cone crusher were simulated numerically, and both the particle size distribution and the crushing product shape were predicted, which provided the theoretical basis for the crushing product quality improvement. Through the pressure test of inter-particle breakage behavior, the characteristics of crushing pressure of particle materials in the crushing chamber of cone crusher were studied. The distribution of crushing pressure on the liner surface in the crushing chamber of cone crusher was analyzed. A wear model of the crushing chamber liner in the cone crusher was established. Based on this model, a constant wear principle was proposed to design the crushing chamber liner in the cone crusher. The influence of liner wear and deation on the crushing product quality of cone crusher was reduced and a theoretical support for prolonging the service life of crushing chamber liner in the cone crusher was provided. Based on the productivity model of cone crusher, the operating model of inter-particle breakage and the constant wear design principle for the crushing liner, a multi-objective programming model of cone crusher perance was established. The design variables and constraints were determined according to the structural and process parameters of cone crusher, and the multi-objective programming model was solved by the sequential quadratic programming . Based on the above research, the perance of a cone crusher employed in one mining company located in Tangshan was optimized. The optimized crushing liner and process parameters of this cone crusher were put into operation online, and the productivity of the improved cone crusher was increased by 16.9. Keywords cone crusher; productivity; inter-particle breakage; particle shape transation; constant wear principle; multi-objective planning model 万方数据 目 录 - V - 目 录 摘 要 .................................................................................................................................. I Abstract ............................................................................................................................. III 目 录 ................................................................................................................................ V 第 1 章 绪 论 ................................................................................................................... 1 1.1 散体物料破碎现状 ................................................................................................. 1 1.2 圆锥破碎机的发展 ................................................................................................. 1 1.3 圆锥破碎机国内外研究现状 ................................................................................. 3 1.3.1 圆锥破碎机生产率模型研究现状 ................................................................... 3 1.3.2 散体物料层压破碎操作模型研究现状 ........................................................... 5 1.3.3 圆锥破碎机破碎腔衬板磨损研究现状 ........................................................... 6 1.3.4 圆锥破碎机性能优化研究现状 ....................................................................... 7 1.4 课题研究主要内容及意义 ..................................................................................... 8 1.4.1 课题研究主要内容 ........................................................................................... 8 1.4.2 课题研究意义 ................................................................................................. 10 第 2 章 圆锥破碎机散体物料运动特性与生产率模型 ................................................. 11 2.1 圆锥破碎机结构特点与工作原理 ....................................................................... 11 2.1.1 圆锥破碎机结构特点 ..................................................................................... 12 2.1.2 圆锥破碎机工作原理 ..................................................................................... 12 2.2 破碎腔内散体物料下落运动特性 ....................................................................... 12 2.2.1 散体物料下落运动特性分析 ......................................................................... 12 2.2.2 散体物料动力学模型 ..................................................................................... 15 2.3 破碎腔内散体物料运动特性分析 ....................................................................... 25 2.4 缩小比例圆锥破碎机散体物料模拟试验 ........................................................... 27 2.4.1 试验设备 ......................................................................................................... 27 2.4.2 试验原理及试验步骤 ..................................................................................... 28 2.5 基于散体物料运动特性的生产率模型 ............................................................... 30 2.5.1 圆锥破碎机阻塞层散体物料运动特性 ......................................................... 31 2.5.2 阻塞层散体物料下落区 ................................................................................. 31 2.5.3 阻塞层散体物料上拱区 ................................................................................. 33 2.5.4 圆锥破碎机生产率模型 .................................................................................. 35 2.6 本章小结 ............................................................................................................... 35 第 3 章 散体物料双粒形循环层压破碎操作模型 ......................................................... 36 万方数据 燕山大学工学博士学位论文 - VI - 3.1 散体物料总体平衡理论与层压破碎理论 ........................................................... 36 3.1.1 总体平衡理论 ................................................................................................. 36 3.1.2 层压破碎理论 ................................................................................................. 38 3.2 散体物料双粒形循环层压破碎操作模型 ........................................................... 38 3.2.1 圆锥破碎机破碎腔内散体物料动态层压破碎过程 ..................................... 39 3.2.2 散体物料双粒形循环层压破碎模拟试验 ..................................................... 43 3.2.3 立方状散体物料的层压破碎模型 ................................................................. 49 3.2.4 针片状散体物料的层压破碎模型 ................................................................. 51 3.2.5 散体物料粒形转化函数 ................................................................................. 53 3.3 某型号圆锥破碎机动态层压破碎产品质量分析 ............................................... 54 3.4 本章小结 ............................................................................................................... 56 第 4 章 圆锥破碎机破碎腔衬板恒定磨损设计准则 ..................................................... 57 4.1 圆锥破碎机破碎腔衬板磨损分析 ....................................................................... 57 4.2 散体物料层压破碎压力模型 ............................................................................... 59 4.2.1 散体物料破碎压力分析 ................................................................................. 59 4.2.2 散体物料层压破碎压力模拟试验 ................................................................. 59 4.2.3 散体物料层压破碎压力模型 ......................................................................... 62 4.2.4 圆锥破碎机破碎腔衬板破碎压力分布 ......................................................... 64 4.3 圆锥破碎机破碎腔衬板磨损模型 ....................................................................... 66 4.4 破碎腔恒定磨损设计准则 ................................................................................... 69 4.4.1 圆锥破碎机破碎腔衬板磨损调整 ................................................................. 69 4.4.2 破碎腔衬板磨损与恒定磨损设计准则 ......................................................... 70 4.5 破碎腔衬板恒定磨损设计准则算例 ................................................................... 75 4.5.1 某型号圆锥破碎机结构参数与工作参数 ..................................................... 75 4.5.2 恒定磨损腔形优化 ......................................................................................... 76 4.6 本章小结 ............................................................................................................... 78 第 5 章 圆锥破碎机性能多目标规划 ............................................................................. 79 5.1 圆锥破碎机性能多目标规划模型 ....................................................................... 79 5.1.1 圆锥破碎机性能与目标函数 ......................................................................... 79 5.1.2 多目标规划模型目标函数耦合关系 ............................................................. 82 5.1.3 多目标规划模型设计变量选定 ..................................................................... 84 5.1.4 设计变量约束 ................................................................................................. 84 5.1.5 多目标规划模型建立 ...................................................................................... 86 5.2 圆锥破碎机性能多目标规划模型求解 ............................................................... 87 5.2.1 多目标规划模型统一目标法 ......................................................................... 88 万方数据 目 录 - VII - 5.2.2 多目标规划模型的序列二次规划法求解 ..................................................... 89 5.3 钧阳机械 ZS200MF 型圆锥破碎机优化算例 ..................................................... 91 5.3.1 ZS200MF 型圆锥破碎机参数 ......................................................................... 91 5.3.2 ZS200MF 型圆锥破碎机多目标规划模型 ..................................................... 92 5.3.3 ZS200MF 型圆锥破碎机优化结果分析 ......................................................... 93 5.4 本章小结 ............................................................................................................... 95 第 6 章 圆锥破碎机性能优化工业试验 ......................................................................... 97 6.1 某矿业公司散体物料破碎工艺流程 ................................................................... 97 6.2 散体物料破碎现场调研与多目标规划模型建立 ............................................... 99 6.2.1 某型号圆锥破碎机破碎生产现场调研 ......................................................... 99 6.2.2 某型号圆锥破碎机性能多目标规划模型 ................................................... 101 6.2.3 某型号圆锥破碎机优化结果 ....................................................................... 102 6.3 工业试验结果分析 ............................................................................................. 103 6.4 本章小结 ...........................................................