起重机泵阀协同压力流量复合控制液压系统能效特性分析.pdf
万方数据 A Dissertation ted to Taiyuan University of Technology In partial fulfillment of the requirement For the degree of Master Energy efficiency characteristics analysis for crane hydraulic system of pump-valve coordinated pressure-flow composite control By Jia Du College of Mechanical and Vehicle Engineering April 2021 万方数据 万方数据 万方数据 学位论文答辩信息表 论文题目 起重机泵阀协同压力流量复合控制液压系统能效 特性分析 论文类型 在[ ]内打 “√” [ ]产品研发 [ ]工程设计 [ ]应用研究 [ ]工程/项目管理 [ ]调研报告 [√]基础研究 答辩日期 2021.06.05 答辩秘书 曹宏利 学位论文答辩委员会成员 姓名 职称 工作单位 备注 黄家海 教授 太原理工大学 主席 程珩 教授 太原理工大学 王鹤 副教授 太原理工大学 万方数据 万方数据 摘 要 I 摘 要 汽车起重机是工程机械的重要品种之一,承担着起重与安装的重要任务,广泛应用 于国家基础设施建设和水利工程建设等领域中。目前汽车起重机的液压系统普遍采用传 统抗流量饱和负载敏感系统。随着人们对起重机定位精度、操控平稳性与微动特性、安 全性及低能耗有更高的要求,传统抗流量饱和负载敏感系统因为其自身的机械机构特性, 响应速度慢、稳定性差、能耗大等缺点逐渐凸显出来,传感器和控制器技术的发展使得 以电控及阀口参数实时测量控制方式取代原有的硬件压力补偿功能得以实现。 本文以徐工 XCT55t 汽车起重机液压控制系统作为研究对象,在国家重点研发计划 “工程机械用高压多路阀”课题三“泵阀协同压力流量复合控制型起重机多路阀” 2018YFB2001203的资助下,提出一种泵阀协同压力流量复合控制液压系统。采用 AMESim 软件,建立传统抗流量饱和负载敏感液压系统仿真模型,并通过试验验证仿真 模型的准确性。对起重机典型负载原理进行分析,提出一种以手柄开度信号为阈值的多 模式控制策略, 建立起重机泵阀协同压力流量复合控制液压系统 AMESim 仿真模型, 搭 建试验平台并进行试验验证新系统仿真模型的准确性, 最后进行新旧液压系统能效特性 对比分析。 本课题的研究对工程机械尤其是汽车起重机的液压控制系统未来的发展趋势 提供了理论支持和方向。 论文的主要研究工作如下 1、首先提出了本课题的研究背景及意义,然后介绍目前几种工程机械典型液压控 制系统,包括负载敏感系统、抗流量饱和负载敏感系统、阀前补偿负载敏感系统、负流 量控制系统和正流量控制系统。详述了电液控制系统的原理和国内外研究现状,针对目 前工程机械液压控制系统存在的问题,最后确定了本课题研究的内容和方法。 2、 分析目前使用在汽车起重机上的传统抗流量饱和负载敏感液压系统的工作原理, 对传统抗流量饱和负载敏感液压系统的液压动力元件、液压控制元件、执行元件、油液 以及容腔进行了详细的分析并建立仿真模型, 然后建立传统抗流量饱和负载敏感液压系 统 AMESim 总体仿真模型。 搭建传统抗流量饱和负载敏感液压系统试验平台, 进行试验 验证了其仿真模型的准确性。 3、针对传统抗流量饱和负载敏感系统响应速度慢、稳定性差、能耗大等特性,提出 泵阀协同压力流量复合控制液压系统并对工作原理进行分析,根据工作原理建立仿真模 型。对起重机典型负载负载进行原理分析,针对起重机执行机构工作中的四个象限,提 出基于模式切换的控制策略。 在 Simulink 中搭建微动模式与复合动作模式下的控制算法 模型,进行设置与编译,将 Simulink 算法模型导入 AMESim 模型中,建立 AMESim/Simulink 联合仿真模型。 万方数据 太原理工大学硕士学位论文 II 4、根据新原理要求改造起重机 22 通径比例多路阀,将比例多路阀中压力补偿器去 除,原 LS 压力传递管路封死,并购置双联电液比例泵,使其符合泵阀协同压力流量复 合控制液压系统的控制要求。搭建多路阀试验平台并对工作原理进行介绍。根据控制策 略选择力士乐 BODAS 控制器并对其进行介绍,根据试验具体要求编写控制程序。最后 进行试验并验证泵阀协同压力流量复合控制液压系统仿真模型的准确性。 5、分别对起重机执行器运行的单动作微动模式、单动作快速运动模式和复合动作 模式进行详细的分析与建模,并且对传统抗流量饱和负载敏感液压系统与泵阀协同压力 流量复合控制液压系统的能效特性进行仿真。仿真结果表明,泵阀协同压力流量复合控 制液压系统相较于传统抗流量饱和负载敏感液压系统没有了压力补偿器的节流损失, 而 且改进了控制策略,进一步降低了系统能耗。泵阀协同压力流量复合控制液压系统在变 幅联单动作微动模式下系统能耗降低约 2.74,变幅联单动作快速运动模式下系统能耗 降低约 9.23,变幅联和卷扬联复合运动模式下系统能耗降低约 10.60。 关键词关键词起重机;抗流量饱和;泵阀协同;电子压力补偿;AMESim 仿真模型;能效分 析 万方数据 ABSTRACT III ABSTRACT Truck cranes are one of the important varieties of construction machinery. They are responsible for the important tasks of lifting and installation. They are widely used in the construction of national infrastructure and water conservancy projects. At present, the hydraulic system of the truck crane generally adopts the traditional anti-flow saturation load-sensing system. As people have higher requirements for crane positioning accuracy, control stability and micro-motion characteristics, safety and low energy consumption, the traditional flow- saturated resistant load-sensing hydraulic system have slow response speed, poor stability, and perance due to their own mechanical characteristics. Shortcomings such as high consumption have gradually emerged. The development of sensor and controller technology has made it possible to replace the original hardware pressure compensation function with electronic control and valve port parameter real-time measurement and control. This paper takes XCMG XCT55t truck crane hydraulic control system as the research object, and is funded by the national key research and development program “High-pressure multi-way valve for construction machinery“ project 3 “Pump and valve coordination pressure and flow compound control type crane multi-way valve“ 2018YFB2001203, the pump-valve coordinated composite control hydraulic system is proposed. Use AMESim software to establish the traditional flow-saturated resistant load-sensing hydraulic system simulation model, and verify the accuracy of the simulation model through experiments. Analyze the typical load principle of the crane, propose a multi-mode control strategy with the handle opening signal as the threshold, establish the AMESim simulation model of the pump-valve coordinated composite control hydraulic system, build a test plat and conduct tests to verify the accuracy of the new system. Finally, analyze the energy efficiency characteristics. The research of this subject provides theoretical support and direction for the future development trend of hydraulic control systems of construction machinery, especially truck cranes. The main research work of the paper is as follows 1. First, the research background and significance of this subject are proposed, and then several typical hydraulic control systems for construction machinery are introduced, including load sensing systems, anti-flow saturation load sensing systems, pre-valve compensation load sensing systems, negative flow control systems and positive flow Control System. Theprinciple of the electro-hydraulic control system and the status quo of research at home and abroad are described in detail, and the content and of the research on this subject are finally determined in view of the problems existing in the current hydraulic control system of 万方数据 太原理工大学硕士学位论文 IV construction machinery. 2. Analyze the working principle of the traditional flow-saturated resistant load-sensing hydraulic system currently used on truck cranes, and carry out the hydraulic power components, hydraulic control components, actuators, oil and chamber of the traditional anti-flow saturation load-sensitive hydraulic system Detailed analysis and establishment of a simulation model, and then the establishment of the traditional flow-saturated resistant load-sensing hydraulic system AMESim overall simulation model. Build the traditional flow-saturated resistant load-sensing hydraulic system test plat, and conduct tests to verify the accuracy of its simulation model. 3. Aiming at the characteristics of slow response speed, poor stability, and high energy consumption of the traditional flow-saturated resistant load-sensing hydraulic system, the pump-valve coordinated composite control hydraulic system is proposed and the working principle is analyzed, and a simulation model is established according to the working principle. The principle analysis of the cranes typical load is carried out, and the control strategy based on mode switching is proposed for the four quadrants of the cranes actuator work. Set up the control algorithm model in the micro-motion mode and the compound action mode in Simulink, set up and compile, import the Simulink algorithm model into the AMESim model, and establish the AMESim/Simulink joint simulation model. 4. According to the requirements of the new principle, the crane 22-diameter proportional multi-way valve was modified, the pressure compensator in the proportional multi-way valve was removed, the original LS pressure transmission pipeline was sealed, and the double electro- hydraulic proportional pump was purchased to make it consistent with the pump-valve coordination. The pressure flow meets the control requirements of the control hydraulic system. Build a multi-way valve test plat and introduce the working principle. According to the control strategy, the Rexroth BODAS controller is selected and introduced, and the control program is written according to the specific requirements of the test. Finally, experiments are carried out to verify the accuracy of the pump-valve coordinated composite control hydraulic system. 5. Per detailed analysis and modeling of the single-action micro-motion mode, single- action fast motion mode and compound action mode of crane actuators respectively, and per compound control of the traditional flow-saturated resistant load-sensing hydraulic system,the pump-valve coordinated composite control hydraulic system are simulated. The simulation results show that, compared with the traditional flow-saturated resistant load-sensing hydraulic system, the pump-valve coordinated composite control hydraulic system does not have the throttling loss of the pressure compensator, and the control strategy is improved, which 万方数据 太原理工大学硕士学位论文 V further reduces the system energy consumption. The pump-valve coordinated composite control hydraulic system reduces the system energy consumption by about 2.74 in the luffing unit single-action micro-motion mode, and reduces the system energy consumption by about 9.23 in the luffing unit single-action fast motion mode. The luffing unit and winch unit are combined The system energy consumption is reduced by approximately 10.60 in sports mode. Keywords crane; flow-saturated resistant; pump-valve coordination; electronic pressure compensation; AMESim simulation model; energy efficiency analysis 万方数据 太原理工大学硕士学位论文 VI 万方数据 目 录 VII 目 录 摘要 ............................................................................................................................................ I ABSTRACT ............................................................................................................................. III 第一章 绪论 .............................................................................................................................. 1 1.1 课题研究背景及意义 ..................................................................................................... 1 1.2 工程机械典型液压控制系统 ......................................................................................... 1 1.2.1 负载敏感系统 .......................................................................................................... 2 1.2.2 抗流量饱和负载敏感系统 ...................................................................................... 2 1.2.3 阀前补偿负载敏感系统 .......................................................................................... 3 1.2.4 负流量控制系统 ...................................................................................................... 4 1.2.5 正流量控制系统 ...................................................................................................... 4 1.3 电液控制系统国内外研究现状 ..................................................................................... 5 1.4 本课题的提出及研究内容 .............................................................................................. 7 1.5 本章小结 ......................................................................................................................... 8 第二章 传统抗流量饱和负载敏感系统仿真模型的建立 ...................................................... 9 2.1 AMESim 仿真软件介绍.................................................................................................. 9 2.2 传统抗流量饱和负载敏感液压系统 ............................................................................. 9 2.2.1 液压动力元件建模 ................................................................................................ 12 2.2.2 液压控制元件 ........................................................................................................ 14 2.2.3 执行元件 ................................................................................................................ 17 2.2.4 其他部件模型 ........................................................................................................ 19 2.1.5 传统抗流量饱和负载敏感液压系统总体仿真模型 ............................................ 20 2.3 起重机变幅系统机械结构分析 ................................................................................... 21 2.3.1 模型搭建 ................................................................................................................ 21 2.3.2 负载模型仿真验证 ................................................................................................ 24 2.4 试验与验证 ................................................................................................................... 26 2.4.1 负载敏感系统压力裕度测定 ................................................................................ 26 2.4.2 主阀压损特性与压力流量特性 ............................................................................ 27 万方数据 太原理工大学硕士学位论文 VIII 2.3.3 复合动作压力流量特性 ....................................................................................... 29 2.4 本章小节 ...................................................................................................................... 29 第三章 泵阀协同压力流量复合控制液压系统仿真模型建立 ........................................... 31 3.1 泵阀协同压力流量复合控制液压系统原理 .............................................................. 31 3.2 泵阀协同压力流量复合控制液压系统 AMESim 模型的建立 ................................. 32 3.2.1 液压动力元件 ....................................................................................................... 32 3.2.2 液压控制元件 ....................................................................................................... 33 3.2.4 泵阀协同压力流量复合控制液压系统总体仿真模型 ....................................... 33 3.3 控制策略 ...................................................................................................................... 34 3.3.1 变幅机构典型负载分析 ....................................................................................... 34 3.3.2 变幅机构控制策略 ............................................................................................... 36 3.4 AMESim/Simulink 联合仿真分析 ............................................................................... 39 3.4.1 复合动作模式 AMESim/Simulink 联合仿真模型的建立 .................................. 39 3.4.2 微动模式 AMESim/Simulink 联合仿真模型的建立 .......................................... 42 3.5 本章小结 ...................................................................................................................... 44 第四章 试验平台的搭建 ....................................................................................................... 45 4.1 试验元件的准备 .......................................................................................................... 45 4.1.1 试验目的 ............................................................................................................... 45 4.1.2 试验用比例多路阀的结构设计 ........................................................................... 45 4.1.3 试验用双联电液比例泵的选型 ........................................................................... 46 4.2 液压试验平台的搭建 .................................................................................................. 48 4.2.1 比例多路阀元件试验要求 ................................................................................... 48 4.2.2 电液比例泵元件试验要求 ................................................................................... 48 4.2.3 试验平台原理 ....................................................................................................... 48 4.3 控制策略的实现 .......................................................................................................... 49 4.3.1 BODAS 控制器介绍 .............................................................................................. 49 4.3.2 BODAS 控制器编程 ...............................................................