履带式液压锚杆钻车关键结构及液压系统设计与研究.pdf
工程硕士专业学位论文 履带式液压锚杆钻车关键结构及液压系统 设计与研究 Design and Research on Key Structure and Hydraulic System of Crawler Hydraulic Anchor Drilling Truck 作 者黄厚华 导 师杨善国 教授 中国矿业大学 二〇一九年五月 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 中图分类号 TH69 学校代码 10290 UDC 621 密 级 公开 中国矿业大学 工程硕士专业学位论文 履带式液压锚杆钻车关键结构及液压系统 设计与研究 Design and Research on Key Structure and Hydraulic System of Crawler Hydraulic Anchor Drilling Truck 作 者 黄厚华 导 师 杨善国 申请学位 工程硕士专业学位 培养单位 机电工程学院 学科专业 机械工程 研究方向 矿山机械 答辩委员会主席 评 阅 人 二○一九年五月 致谢致谢 时光荏苒、岁月如梭,三年的硕士生涯即将结束。回首这三年的岁月,依依 不舍之情涌上心头, 值此论文完成之际, 我谨向在我硕士研究生期间对我的科研、 学习和生活方面给予关心和帮助的人们致以最衷心的感谢。 首先我要以最真挚的心情感谢我的导师杨善国教授, 本论文的完成倾注了杨 教授大量的时间与心血。导师的思维敏锐、治学态度严谨、学识渊博,我深深受 益于导师的高尚的品格以及在学术上、生活中给予我的关心和谆谆教导。今后我 将更加努力,工作一丝不苟、认真努力,不辜负恩师的期望 研究生生活中,同门的师兄弟在我的科研和生活中给予了莫大的帮助和鼓 励,在此表示深深的感谢,三年来,我们朝夕相处,共同进步,同窗之谊,我将 终生难忘 感谢我最爱的家人。 感谢他们始终如一对我的爱护, 感谢他们的鼓励和支持, 他们无私的爱一直以来都是我前进的最大动力。 最后,向百忙之中评审本论文的各位专家学者表示深深的感谢 I 摘摘 要要 煤炭资源的生产和安全事关国家能源战略, 直接对国民经济的可持续发展产 生影响。锚杆支护是一种有效的煤矿井下巷道支护方式,可以显著改善矿工在井 下巷道内的作业环境和安全条件。履带式液压锚杆钻车是锚杆支护的关键设备, 与传统锚杆用风钻相比,具有速度快、成本低以及工人劳动强度小等优势,已在 国内外煤矿及隧道施工中得到广泛应用。 目前国内履带式液压锚杆钻车可靠性较 低,仅依靠相似机械进行类比设计,没有独立的设计方法和设计思路,液压控制 系统较复杂且稳定性差,以上缺陷限制了履带式液压锚杆钻车的发展,同时制约 了矿山及隧道的建设和运行。因此,全面提高锚杆钻车设计质量,优化设计钻车 关键部件及液压控制系统,对提高煤矿生产效率和生产安全性具有重要意义。 本文以履带式液压锚杆钻车为研究对象,设计与钻车相适应的变幅机构、移 动机构以及液压系统,并对关键部件进行数值仿真和优化。本文的主要研究内容 如下 (1)分析履带式液压锚杆钻车研究现状,对主要的功能部件进行设计计算以 及参数选择。将钻车按功能划分为行走模块、变幅模块、钻进模块和液压系统, 根据钻车移动部件的要求计算履带的主要参数, 结合钻孔方位和高度要求设计变 幅机构,计算了液压缸在内的相关参数,根据性能要求设计液压系统,计算了液 压系统的主要参数,完成关键元件的选型。 (2)针对履带式液压锚杆钻车的变幅装置进行结构校核与仿真,建立三维模 型后分别进行运动学仿真、动力学仿真以及模态分析,发现变幅机构支撑架的薄 弱部位。结果表明变幅机构的强度与刚度均满足设计要求。 (3)建立履带式液压锚杆钻车的液压系统仿真模型,将模型分为变幅系统模 块、进给系统模块、履带行走及平台旋转模块以及负载敏感泵组模块,对驱动履 带行走的液压马达进行仿真, 分析各个功能模块的执行元件能否完成既定的工作 目标。从仿真图线可以看出,所设计的液压系统稳定性强,机械效率高,有良好 的动态性能,可以完成履带式锚杆钻车的行走、调高及钻进等动作。 (4)对变幅机构中间支撑架进行拓扑优化分析,根据分析结果改进支撑架结 构,优化三维模型,重复进行静力学分析和模态分析,有限元分析结果表明结构 最大变形量减小,结构强度与刚度提高的同时各阶固有频率提高,验证了此变幅 系统的可靠性。 该论文有图 64 幅,表 5 个,参考文献 88 篇。 关键词关键词锚杆钻车;有限元分析;液压系统设计;拓扑优化 III Abstract The production and security of coal resources are closely related to the national energy strategic security, and directly affect the sustainable development of the national economy. Bolt support is an effective way to support underground tunnels in coal mines, which can significantly improve the working environment and safety conditions of miners in underground roadways. Crawler-type hydraulic anchor drill truck is the key equipment for bolt support. Compared with traditional pneumatic drill for bolt, it has the advantages of high speed, low cost and low labor intensity. It has been widely used in coal mine and tunnel construction at home and abroad. At present, the reliability of domestic crawler-type hydraulic anchor drilling rig is low. It only relies on similar machinery for analogy design. There is no independent design and design idea. The hydraulic control system is complex and poor stability. The above defects restrict the development of crawler-type hydraulic anchor drilling rig, and restrict the construction and operation of mines and tunnels. Therefore, it is of great significance to improve the design quality of bolt drilling rig and optimize the key components and hydraulic control system of the drilling rig for improving the adaptability of mining machinery. In this paper, the crawler hydraulic anchor drilling rig is taken as the research object, and the amplitude-changing mechanism, power head mechanism and hydraulic system are designed, and the key components are simulated by computer. The main contents of this paper are as follows 1 Analyzing the research status of crawler hydraulic anchor drilling rig, designing and calculating the main functional components and selecting the parameters. The drilling rig is divided into walking module, amplitude-changing module, drilling module and hydraulic system according to its function. The main parameters of the track are calculated according to the requirements of the moving parts of the drilling rig. The amplitude-changing mechanism is designed according to the requirements of the drilling rigs azimuth. The relevant parameters of the hydraulic cylinder are calculated. The hydraulic system is designed according to the perance requirements, and the parameters of the system are calculated to complete the selection of key components. 2 Check and simulate the structure of the luffing device of the crawler-type hydraulic anchor drilling rig. After establishing the three-dimensional model, kinematics simulation, dynamics simulation and modal analysis are carried out to find IV out the weak parts of the support frame of the luffing mechanism. The results show that the strength and stiffness of the luffing mechanism meet the design requirements. 3 The hydraulic system simulation model of crawler-type hydraulic anchor drilling rig is established. The model is divided into luffing system module, feed system module, crawler walking and plat rotating module and load-sensitive pump feeding module. The hydraulic motor driving crawler walking is simulated, and the cuting components of each functional module are analyzed whether they can fulfill the established working objectives. From the simulation drawings, it can be seen that the designed hydraulic system has strong stability, high mechanical efficiency and good dynamic perance. It can complete the walking, raising and drilling of crawler-type anchor drilling rig. 4 Topology optimization analysis is carried out on the intermediate support frame of the amplitude-changing mechanism. According to the analysis results, the structure of the support frame is improved, the three-dimensional model is optimized, the static analysis and modal analysis are repeated. The results of finite element analysis show that the maximum deation of the structure is reduced, the strength and stiffness of the structure are increased, and the natural frequencies of each order are increased, which verifies the reliability of the amplitude-changing system. There are 64 figures, 5 tables and 88 references in this paper. Keywords Bolt drilling vehicle; Finite element analysis; Hydraulic system design; Topology optimization V 目目 录录 摘摘 要要.......................................................................................................................... III 目目 录录............................................................................................................................ V 图清单图清单.......................................................................................................................... IX 表清单表清单....................................................................................................................... XIII 变量注释表变量注释表 ................................................................................................................ XV 1 绪论绪论............................................................................................................................. 1 1.1 选题背景 .................................................................................................................. 1 1.2 研究意义 .................................................................................................................. 2 1.3 锚杆钻车发展动态 .................................................................................................. 3 1.4 国内外研究现状 ...................................................................................................... 6 1.5 存在的问题 ............................................................................................................ 10 1.6 主要研究内容和技术路线 .................................................................................... 10 1.7 本章小结 ................................................................................................................ 12 2 锚杆钻车系统设计及计算锚杆钻车系统设计及计算 ...................................................................................... 13 2.1 锚杆钻车车架及行走系统的设计 ........................................................................ 14 2.2 液压进给系统的设计 ............................................................................................ 17 2.3 动力头设计 ............................................................................................................ 22 2.4 变幅机构的设计 .................................................................................................... 23 2.5 本章小结 ................................................................................................................ 28 3 锚杆钻车变幅系统仿真分析锚杆钻车变幅系统仿真分析 .................................................................................. 29 3.1 变幅机构运动检测 ................................................................................................ 29 3.2 变幅系统模态分析 ................................................................................................ 30 3.3 变幅机构动力学分析 ............................................................................................ 35 3.4 变幅机构静力学分析 ............................................................................................ 37 3.5 本章小结 ................................................................................................................ 42 4 履带式锚杆钻车液压系统仿真履带式锚杆钻车液压系统仿真 .............................................................................. 43 4.1 仿真软件的选择 .................................................................................................... 43 4.2 履带液压系统建模与仿真 .................................................................................... 44 4.3 进给液压系统建模与仿真 .................................................................................... 51 4.4 变幅液压系统建模与仿真 .................................................................................... 52 4.5 本章小结 ................................................................................................................ 52 VI 5 变幅机构拓扑优化分析变幅机构拓扑优化分析 .......................................................................................... 53 5.1 拓扑优化理论 ........................................................................................................ 53 5.2 优化模型建立 ........................................................................................................ 54 5.3 优化结果分析 ........................................................................................................ 57 5.4 本章小结 ................................................................................................................ 60 6 结论与展望结论与展望 .............................................................................................................. 61 6.1 结论 ........................................................................................................................ 61 6.2 展望 ........................................................................................................................ 61 参考文献参考文献 ...................................................................................................................... 63 作者简历作者简历 ...................................................................................................................... 69 论文原创性声明论文原创性声明 .......................................................................................................... 71 学位论文数据集学位论文数据集 .......................................................................................................... 73 VII Contents Abstract ....................................................................................................................... III Contents ..................................................................................................................... VII List of Figures ............................................................................................................. IX List of Tables ........................................................................................................... XIII List of Variables ........................................................................................................ XV 1 Introduction ................................................................................................................ 1 1.1 Background of Topic ................................................................................................ 1 1.2 Significance of the Study .......................................................................................... 2 1.3 Development Trend of Bolt Drilling Machine .......................................................... 3 1.4 Research Status at Home and Abroad ....................................................................... 6 1.5 Existing Problems ................................................................................................... 10 1.6 Main Research Contents and Technical Routes ...................................................... 10 1.7 Summary ................................................................................................................. 12 2 Design and Calculation of Bolt Drilling Rig System ............................................. 13 2.1 Design of Frame and Walking System of Bolt Drilling Truck ............................... 14 2.2 Design of Hydraulic Feed System .......................................................................... 17 2.3 Power Head Design ................................................................................................. 22 2.4 Design of Variable Amplitude Mechanism ............................................................ 23 2.5 Summary ................................................................................................................. 28 3 Simulation analysis of the amplitude-changing system of bolt drilling rig ........ 29 3.1 Motion Detection of Variable Amplitude Mechanism ........................................... 29 3.2 Modal analysis of variable amplitude system ......................................................... 30 3.3 Dynamic Analysis of Luffing Mechanism .............................................................. 35 3.4 Static Analysis of Amplitude Change Mechanism ................................................. 37 3.5 Summary ................................................................................................................. 42 4 Hydraulic System Simulation of Crawler Bolt Drilling Rig ................................ 43 4.1 Selection of Simulation Software ................