大型矿用液压挖掘机电液控制系统关键技术研究.pdf
分分 类类 号号 密密 级级 太原理工大学 博 士 学 位 论 文 题 目 大型矿用液压挖掘机电液控制系统 关键技术研究 英文并列题目 Hydraulic Control System on the Large 研究生姓名 董致新 学 号 2013310112 专 业 机械工程 研 究 方 向 流体传动与控制 导 师 姓 名 权 龙 职 称 教 授 学位授予单位 太原理工大学 论文提交日期 2019 年 4 月 地 址 山西太原 太 原 理 工 大 学 Research on the Key Technology of Electro- Mining Hydraulic Excavator 万方数据 万方数据 太原理工大学博士研究生学位论文 I 大型矿用液压挖掘机电液控制系统关键技术研究 摘 要 大型矿用液压挖掘机主要用于露天矿开采和大型基建工程,其特点是 工作重量大、装机功率大、工作环境恶劣、能量消耗大。液压挖掘机采用 的液压系统运行时能量效率很低,平均效率只能达到 30 40 ,因此具 有巨大的节能潜力。为了改变这一现状,本研究对大型矿用液压挖掘机电 液控制系统设计和节能控制的关键技术进行了全面研究。 研究依托项目中设计的 15 m液压挖掘机为这一吨位的国内首台机器, 缺乏相关设计经验和依据。针对这一现状,利用机电液联合仿真虚拟样机 模型,对新机型使用的电液控制系统进行了仿真设计,全面分析了其工作 性能。最后对生产的 15 m液压挖掘机物理样机进行测试,分析测试结果并 与仿真结果进行对比,得到完整的大型矿用液压挖掘机虚拟样机建模方法。 在全面分析大型液压挖掘机能耗和控制问题的基础上,提出将进出口 独立控制系统引入大型液压挖掘机。为了便于验证和分析该控制系统,首 先建立了基于 6 t 液压挖掘机的进出口独立控制系统试验平台,在该平台基 础上进行了进出口独立控制液压系统的控制策略和节能效果的分析验证。 在此基础上,以 76 t 级挖掘机为平台,设计了以目前挖掘机常用的负 流量控制系统为基础的进出口独立控制系统,并设计了基于液-气储能平衡 原理的动臂势能回收系统。新系统全面考虑了大型工作装置重量大、启动 惯性大的特点。通过了实验和仿真分析,证明新系统全面提高了挖掘机能 万方数据 太原理工大学博士研究生学位论文 II 效。 进一步的,针对目前挖掘机动臂能量回收系统的工作特点,建立了基 于多物理场耦合方法的蓄能器热固流耦合模型。得到蓄能器工作过程气体 容腔内部的动态压力分布、温度分布和气体运动规律,并分析了蓄能器参 数对系统效率的影响。利用建立的模型进行蓄能器选型参数优化并通过实 际机器验证选型的有效性。 在前文研究的基础上,将进出口独立控制的电液比例控制系统和液-气 储能平衡的动臂势能回收系统推广到了更大吨位的 20 m液压挖掘机的设 计中,并通过虚拟样机仿真验证了系统的可行性。 本文主要研究成果为 (1)利用电液联合仿真虚拟样机设计了国内第一台斗容 15 m3的大型 矿用液压挖掘机样机电液控制系统。 (2)提出了泵阀复合控制的进出口独立控制液压系统并建立了实验平 台,通过实验验证了新系统的控制策略。 (3)提出了基于液-气储能平衡原理的大型液压挖掘机势能回收系统, 并在 76 t 挖掘机样机上验证。 (4) 将进出口独立控制的电液控制系统和液-气储能平衡的动臂势能回 收系统进行了推广,设计了采用在 20 m液压挖掘机原型机上的新型系统。 关键词大型矿用液压挖掘机,电液控制系统,进出口独立控制,蓄能器, 节能 万方数据 太原理工大学博士研究生学位论文 III Research on the Key Technology of Electro-Hydraulic Control System on the Large Mining Hydraulic Excavator ABSTRACT The large hydraulic excavators are characterized by large working weight, high installed power, poor working environment, and huge energy consumption. They are mainly used for the open-pit mining and major infrastructure project. The average efficiency of the hydraulic system, applied in the large excavator, can only reach 30 40. As the efficiency is a very low value, there is a huge energy saving potential. Based on the above actuality, a comprehensive study on the essential design and energy saving technologies of the machinery, electricity, and hydraulic control system of large mining hydraulic excavators is carried out. Based on the current situation that the 15 m hydraulic excavator lack design basis, the simulation design of the machinery, electricity, and hydraulic control system of the 15 m hydraulic excavator, is carried out by machinery, electricity and hydraulic joint simulation virtual prototype model. The machinery, electricity and hydraulic control system of the large excavator, including the working device, swing system and walking system, is designed. Its operating perance is comprehensively analyzed. The physical prototype of the 15 m hydraulic excavator is designed and manufactured, and then tested. The experimental results are analyzed and compared with the simulation results and the modeling and simulation deviation of virtual prototype is obtained. The research comprehensively analyzes the research and design problems of large hydraulic excavator by experiment and simulation. Based on this, the 万方数据 太原理工大学博士研究生学位论文 IV idea of meter-in and meter-out independent control is introduced into the hydraulic control system of large hydraulic excavator. A test plat of meter-in and meter-out independent control system is established on a 6-ton hydraulic excavator. On the basis of the plat, the control strategy and energy saving effect of the hydraulic system of meter-in and meter-out independent control are analyzed and verified. Based on the comprehensive analysis of meter-in and meter-out independent control system, a meter-in and meter-out independent control system based on negative flow control system is designed for the large hydraulic excavator. This is pered on the plat of the 76-ton hydraulic excavator. For the large hydraulic excavator, the weight of the working device and the starting inertia are very large. Therefore, boom potential energy recovery system based on liquid-gas energy storage balance principle is added to further improve the efficiency of the excavator. Piston accumulator is the key component of the boom potential energy recovery system, which is based on liquid-gas energy storage balance principle, on the plat of 76-ton hydraulic excavator. So a thermodynamic model of accumulator based on multi-physical field coupling is established. The dynamic pressure distribution, temperature distribution and the motion law of gas inside the gas chamber during the working process of the accumulator are obtained by the model. The model is used to select the appropriate accumulator, and it is verified by the actual equipment. Basis on the design and analysis of 15 m3 hydraulic excavator and 76-ton hydraulic excavator, the electro-hydraulic control system with meter-in and 万方数据 太原理工大学博士研究生学位论文 V meter-out independent control and the potential energy recovery system of boom are extended to the design of 20 m3 hydraulic excavator with larger tonnage, and the system is verified by virtual prototype simulation. The main contributions of this paper are as following 1 The machinery, electricity, and hydraulic control system of a China’s first large mining hydraulic excavator, with the bucket capacity of 15 m , is designed by virtual prototype technology. 2 A meter-in and meter-out independent control hydraulic system based on the pump-valve compound control is proposed, and the experimental plat is established. The control strategy of the new system is verified by experiments 3 A boom potential energy recovery system based on liquid-gas energy storage balance principle is proposed, and it is applied in a 76-ton hydraulic excavator with the meter-in and meter-out independent control system. 4 The electro-hydraulic control system with meter-in and meter-out independent control and the potential energy recovery system of boom are extended to the design of 20 m3 hydraulic excavator with larger tonnage, KEY WORDS large mining hydraulic excavator, electro-hydraulic control system, independent control of import and export, energy storage, energy saving 万方数据 太原理工大学博士研究生学位论文 VI 万方数据 太原理工大学博士研究生学位论文 VII 目 录 摘 要 ........................................................................................................................................... I ABSTRACT ............................................................................................................................. III 目 录 ...................................................................................................................................... VII 第一章 绪论 .............................................................................................................................. 1 1.1 课题背景和意义 .......................................................................................................... 1 1.2 大型液压挖掘机发展概况 .......................................................................................... 1 1.3 大型液压挖掘机液压系统研究现状 .......................................................................... 5 1.3.1 大型液压挖掘机液压系统节能技术现状 ........................................................ 6 1.3.2 负载口独立控制系统及其节能系统的研究现状 .......................................... 11 1.3.3 关键能量储存元件研究现状 .......................................................................... 14 1.4 论文主要内容 ............................................................................................................ 16 第二章 15 m 大型矿用液压挖掘机电液控制系统建模 ..................................................... 17 2.1 液压挖掘机上车建模 ................................................................................................ 17 2.1.1 正铲工作装置机构特性分析 .......................................................................... 17 2.1.2 正铲工作装置运动分析 .................................................................................. 21 2.1.3 工作装置虚拟样机模型建立 .......................................................................... 25 2.1.4 挖掘机工作装置液压系统模型的建立 .......................................................... 29 2.1.5 挖掘机回转液压系统模型的建立 .................................................................. 32 2.1.6 整机模型的建立 .............................................................................................. 33 2.2 液压挖掘机下车建模 ................................................................................................ 34 2.2.1 履带行走系的组成及功能 .............................................................................. 34 2.2.2 行走液压系统 .................................................................................................. 35 2.2.3 履带张紧液压系统 .......................................................................................... 36 2.2.4 整体控制策略 .................................................................................................. 37 2.2.5 履带系统设计方法 .......................................................................................... 39 2.2.6 履带联合仿真模型 .......................................................................................... 45 2.3 本章小结 .................................................................................................................... 49 万方数据 太原理工大学博士研究生学位论文 VIII 第三章 15 m 大型矿用液压挖掘机电液控制系统仿真及实验 ........................................ 51 3.1 挖掘机工作装置仿真和实验 .................................................................................... 51 3.1.1 动臂仿真及实验 .............................................................................................. 51 3.1.2 斗杆仿真及实验 .............................................................................................. 54 3.1.3 铲斗仿真及实验 .............................................................................................. 57 3.2 挖掘机回转系统仿真和实验 .................................................................................... 59 3.3 挖掘机整机仿真 ........................................................................................................ 62 3.4 挖掘机行走系统仿真和实验 .................................................................................... 65 3.4.1 多体动力学结果 .............................................................................................. 65 3.4.2 样机试验 .......................................................................................................... 70 3.4.3 结果对比分析 .................................................................................................. 73 3.5 本章小结 .................................................................................................................... 75 第四章 进出口独立控制液压系统控制策略和特性研究 .................................................... 77 4.1 进出口独立控制策略的研究对象 ............................................................................. 78 4.1.1 进出口独立控制液压挖掘机试验测试平台 .................................................. 78 4.1.2 进出口独立控制液压挖掘机仿真模型 .......................................................... 81 4.2 进出口独立控制系统的控制策略研究 ..................................................................... 82 4.2.1 单油口控制策略 .............................................................................................. 82 4.2.2 液压执行器工作负载模式分析 ...................................................................... 84 4.2.3 液压执行器泵阀复合控制策略分析 .............................................................. 88 4.2.4 挖掘机整机总体控制策略分析 ...................................................................... 93 4.3 进出口独立控制方法的仿真分析试验验证 .......................................................... 100 4.3.1 单执行器动作 ................................................................................................ 100 4.3.2 象限切换动作 ................................................................................................ 101 4.3.3 复合动作 ........................................................................................................ 103 4.3.4 能耗分析 ........................................................................................................ 105 4.4 本章小结 .................................................................................................................. 108 第五章 大型液压挖掘机节能电液控制系统研究 .............................................................. 109 5.1 76 t 液压挖掘机平台的进出口独立控制系统设计................................................ 109 万方数据 太原理工大学博士研究生学位论文 IX 5.1.1 基于负流量系统的进出口独立控制系统基本原理 .................................... 110 5.1.2 76 t 挖掘机进出口独立控制系统基本结构 .................................................. 112 5.2 76 t 挖掘机进出口独立控制系统试验分析 ............................................................ 114 5.2.1 动臂单动作 .................................................................................................... 114 5.2.2 斗杆单动作 .................................................................................................... 116 5.2.3 铲斗单动作 .................................................................................................... 118 5.3 76 t 挖掘机的进出口独立控制系统能耗分析 ........................................................ 120 5.3.1 单动作能耗 .................................................................................................... 121 5.3.2 整机能耗 ........................................................................................................ 125 5.4 基于液-气储能平衡的大型液压挖掘机动臂势能回收系统研究 ......................... 126 5.4.1 液-气储能平衡的大型液压挖掘机动臂势能回收系统 ............................... 126 5.4.2 蓄能器类型的选择 ........................................................................................ 127 5.4.3 活塞式蓄能器模型 ........................................................................................ 129 5.4.4 大容量活塞式蓄能器多物理场耦合模型 .................................................... 141 5.4.5 蓄能器多物理场耦合模型动态分析 ............................................................ 145 5.5 液-气储能平衡势能回收系统效率研究 ................................................................. 152 5.5.1 蓄能器效率研究 ............................................................................................ 152 5.5.2 液-气储能平衡系统中的蓄能器效率分析 ................................................... 156 5.6 本章小结 .................................................................................................................. 158 第六章 新型电液控制系统节能潜力分析及推广使用 ...................................................... 161 6.1 新型电液控制系统节能潜力分析 .......................................................................... 161 6.1.1 降低节流损失的节能潜力 ............................................................................ 161 6.1.2 回收再利用动臂重力势能的节能潜力 ........................................................ 162 6.2 20 m 液压挖掘机上车建模 ...................................................................................... 163