采煤机永磁半直驱截割传动系统动态特性及可靠性研究.pdf
硕士学位论文 采煤机永磁半直驱截割传动系统动态特性 及可靠性研究 Study on Dynamic Characteristics Reliability of Shearer Permanent Magnet Semi-Direct Drive Cutting Transmission System 作 者陈家俊 导 师李 威 教授 中国矿业大学 二〇二〇年五月 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 中图分类号 TB114.3 学校代码 10290 UDC 621 密 级 公开 中国矿业大学 硕士学位论文 采煤机永磁半直驱截割传动系统动态特性 及可靠性研究 Study on Dynamic Characteristics Reliability of Shearer Permanent Magnet Semi-Direct Drive Cutting Transmission System 作 者 陈家俊 导 师 李威 申请学位 工学硕士学位 培养单位 机电工程学院 学科专业 机械设计及理论 研究方向 机械系统可靠性 答辩委员会主席 肖兴明 评 阅 人 二○二○年五月 致谢致谢 时光如白驹过隙,转眼间我的硕士生涯已接近尾声,而刚入学的光景犹如昨 日,至今仍历历在目。硕士的三年是既漫长又短暂的,这条朴实却又充满挑战的 求学之路,让我收获的不仅是更加充实的知识,更是一段珍贵难忘的经历。细数 过往求学的不易和收获的喜悦, 我不经由衷地感谢这一路走来在身边陪伴并支持 自己的师长与同门。 首先,最应该感谢的当属我的导师李威教授,三年时间里,从最初研究方向 的选择,研究课题的调整,到具体方案的落实,大小问题的解决,乃至未来道路 的选择,自始至终导师都认真负责地给予了悉心的指导,同时又给我们提供了相 对宽松,充满创新活力的成长空间,是李老师一直以来的正确指引帮助我在科研 上取得了点滴成果,同时李老师以身作则,负责认真,坦诚率真的为人处世的态 度和风范,更是深深地影响了我,是为人师者的典范。在此,谨向李老师表示深 深的感谢和祝福。 感谢课题组的杨雪锋老师,王禹桥老师,范孟豹老师,许少毅老师。杨老师 对科研创新的钻研进取, 王老师待人的和善可亲, 范老师对论文写作的精益求精, 许老师对工作的认真负责, 都使我受益匪浅。 并且各位老师治学严谨, 见解深刻, 多次在专题研讨的过程中认真提问并悉心指导, 在我的研究进程中给予了很大的 启发和帮助。 特别感谢盛连超博士一直以来在我求学过程中的引领和帮助, 从研究的选题, 到论文的写作,直至论文的返修,事无巨细均悉心指导,让我一次次地突破各个 困难和瓶颈,是我科研之路上的引路明灯;感谢姜耸博士在这三年学习生涯中的 密切支持,始终无私地为我提出研究内容中的存疑之处,并第一时间耐心诚恳地 为我探讨解惑,是我科研过程中的强大助力;感谢封燕硕士一直以来生活的关心 与陪伴,每当我遇到坎坷都力所能及地帮助我,并给予我心理上的安慰和支持, 大大缓解了我求学过程中的压力。此外,还要感谢课题组的闻东东博士、王承涛 博士、 陈宇鸣博士、 薛志安博士、 石一博士、 李敏硕士、 郑嘉毓硕士、 陈瑶硕士、 王垚硕士、樊书琪硕士、王越硕士、杨永艳硕士、徐嘉伟硕士,感谢你们一直以 来的陪伴与帮助。 特别感谢父母对我学业的关心与鼓舞, 是你们多年以来在我学习和做人上无 微不至的敦促和教导,才得以让愚钝的我今天略有所获,在今后的学习生涯中, 要以加倍的努力和成果来回报你们的良苦用心。 最后, 非常感谢各位专家、 学者对我的硕士论文进行评阅, 提出宝贵的建议。 在此,谨向你们表示深深的谢意 I 摘摘 要要 由于煤炭的开采环境恶劣,煤层结构复杂,而传统采煤机截割部传动系统的 传动环节长,容易加剧齿轮的振动,导致传动失稳,在长期工作下易造成齿轮的 疲劳破坏等问题,因而本课题尝试了对现有截割传动系统的改进,结合目前稀土 永磁材料性能和电机驱动技术的发展, 提出了永磁同步电机半直接驱动的截割部 传动系统,并针对新系统工作的稳定性和可靠性问题,先后展开了温度效应下齿 轮的动力学特性分析、混沌控制、截割负载模拟以及失效相关性下传动系统的动 态可靠性评估。主要的研究内容包括 1鉴于采煤机极端的工作温度变化会引发轮齿热变形,间接影响齿轮的正 常工作,以半直驱截割传动系统的第一级齿轮副为研究对象,分析齿轮的时变啮 合刚度和温度变化下齿厚及齿侧间隙的变化,结合啮合阻尼、支承刚度和支承阻 尼等因素的耦合作用,建立齿轮副的四自由度扭振动力学模型,并对齿轮系统参 数作无量纲化处理,采用龙格库塔法对系统模型进行数值仿真,进而分析系统在 不同频率和温度下的动态特性,另外根据齿轮副的动态传递误差,研究不同条件 下齿轮的啮合状态;针对系统产生的混沌状态,通过施加外部周期共振激励,对 温度效应下系统的不稳定运动实现了有效的控制。 2针对煤炭截割过程中煤层构成的复杂性, 充分考虑单位空间内矸石数量、 大小及分布位置等参数的不确定性,模拟含矸石煤层工况下滚筒的截割负载;结 合永磁电机电磁力矩、传动轴扭转刚度和扭转阻尼等因素,建立截割部传动系统 的弯-扭动力学模型,求解系统的动态响应并获取各齿轮的动态啮合力,通过雨 流计数法统计处理齿根弯曲应力并建立八级载荷谱;基于材料的全域 S-N 曲线 和非线性疲劳损伤累积理论, 并考虑多级载荷不同加载顺序对材料疲劳损伤的影 响以及采煤负载的随机性,建立多级随机加载下齿根的剩余强度模型。 3确定齿根弯曲强度和应力的时变分布特征,基于应力-强度干涉理论,建 立齿根弯曲疲劳的时变可靠性模型,根据齿宽、模数和齿数等参数的调整对齿根 应力及齿根弯曲可靠性的影响,完成齿轮参数的优化设计;分析时变啮合刚度、 静态传递误差和传动轴扭转刚度等系统参数变化时, 对齿轮动态特性及可靠度的 影响,为传动系统的结构优化提供参考;研究各齿轮失效率曲线间的相关关系, 选取适当的相关函数确定齿轮间的失效相关度,得出各齿轮副的综合可靠性,进 而分析齿轮副间的失效相关性, 最终得出元件失效相关下传动系统的动态可靠性, 通过比较失效相关与相互独立的条件下分析结果的异同, 证明失效相关下可靠性 预测的合理性。 4基于等效相似理论,搭建小比例截割部传动测试实验台,针对含矸石采 II 煤工况,首先进行了突变负载模拟实验,测试结果表现了磁粉式测功机良好的加 载性能和永磁同步电机灵敏的动态响应性能, 验证了实验系统应用于采煤负载模 拟测试的可行性;其次进行了不同负载下的齿轮箱振动测试试验,并对测试结果 进行频谱分析,验证了齿轮振动与可靠性间的相关关系,反映了大载荷加速齿轮 疲劳失效的作用机理;最后通过 ANSYS 对末端齿轮副进行瞬态动力学仿真,仿 真结果验证了数值计算所得应力的准确性。 该论文有图 78 幅,表 17 个,参考文献 93 篇。 关键词关键词采煤机;温度效应;齿轮动力学;动态可靠性;失效相关性 III Abstract Because of the bad mining environment and complex coal seam structure, it’s easy to aggravate the vibration of the gear and lead the transmission instability with the long transmission link of the traditional shearer cutting system, then make fatigue damage of gears under long-term work. Therefore, this project attempts to improve the existing cutting transmission system. Combined with the development of rare earth permanent magnet material and motor drive technology, a cutting part transmission system semi- direct driven by permanent magnet synchronous motors is proposed. Aiming at the stability and reliability of the new system, the dynamic characteristics of the gear under temperature effects, chaos control, cutting load simulation, and dynamic reliability of the transmission system under failure correlation were successively developed. The main research contents include 1 In view of the extreme working temperature changes of the shearer, the gear teeth will be thermally deed, then indirectly affect the normal operation of the gear. Taking the first-stage gear pair of the semi-direct-drive cutting transmission system as the research object, and analyzing the changes in tooth thickness and gear clearance under temperature changes. Then a four-degree-of-freedom torsional vibration dynamic model of gear pair is established by combining the coupling effects of meshing damping, bearing stiffness, and bearing damping. Then dimensionless gear system parameters, and the Runge-Kutta is used to simulate the model, the dynamic characteristics of the system at different frequencies and temperatures are analyzed. In addition, according to the dynamic transmission error of gear pair, the meshing state under different conditions is studied. For the chaotic state generated by the system, the unstable motion under the temperature effect is effectively controlled by applying the external periodic resonance excitation. 2 Since the complexity of coal seam composition in coal cutting process, the uncertainty of parameters such as quantity, size and distribution of gangue in unit space is fully considered, and the cutting load of drum in coal seam with gangue is simulated. Combined with the electromagnetic torque of PMSM, torsional stiffness and damping of transmission shaft, the bending-torsional dynamic model of the transmission system is established. Then the dynamic response is solved and the dynamic meshing force of each gear is obtained. The bending stress of tooth root is counted by rain flow counting and the eight-level load spectrum is established. Based on global S-N curve of material and nonlinear fatigue accumulation theory, and considering the influence of IV different loading sequence of multistage load on material fatigue damage, the residual strength model of root under random load is established. 3 Defined the time-varying distribution characteristics of root bending strength and stress. Based on stress-strength interference theory, the time-varying reliability model of tooth root bending fatigue is established. According to the influence of tooth width, module and number of teeth on root stress and reliability, the optimal design of gear parameters is completed. The influence of time-varying meshing stiffness, static transmission error and torsional stiffness of transmission shaft on dynamic characteristics and reliability of gear is analyzed, which provides reference for structural optimization of transmission system. The correlation between the failure rate curves of each gear is studied, and selected the appropriate correlation function to define the failure correlation between gears. Then analyzed the failure correlation between gear pairs, and finally got the dynamic reliability of the transmission system under the failure correlation of each component. By comparing the analysis results under the condition of failure correlation, complete correlation and mutual independence, the rationality of reliability prediction under failure correlation is proved. 4 Based on the equivalent similarity theory, a transmission test bench as small- scale cutting unit is built. Aiming at the gangue coal mining conditions, a sudden load simulation experiment was first pered. The test results show the good loading perance of the magnetic powder dynamometer and the sensitive dynamic response perance of the PMSM, which verifies the feasibility of the experimental system applied to coal mining load simulation test. Secondly, the gearbox vibration test under different loads were pered, and the results were analyzed by frequency spectrum, which verified the correlation between gear vibration and reliability, reflecting the mechanism of rapid fatigue failure under large load. Finally, the transient dynamic simulation of the final gear pair was pered by ANSYS. The simulation results verified the accuracy of the stresses obtained by numerical calculation. The paper has 78 pictures, 17 tables, and 93 references. Keywords shearer; temperature effect; gear dynamics; dynamic reliability; failure correlation V 目目 录录 摘摘 要要............................................................................................................................ I 目目 录录........................................................................................................................... V 图清单图清单......................................................................................................................... IX 表清单表清单...................................................................................................................... XIV 变量注释表变量注释表 ............................................................................................................... XV 1 绪论绪论............................................................................................................................ 1 1.1 课题来源 ................................................................................................................. 1 1.2 课题背景及研究意义 ............................................................................................. 1 1.3 国内外研究现状 ..................................................................................................... 3 1.4 目前存在的问题 ..................................................................................................... 8 1.5 主要研究内容 ......................................................................................................... 8 2 温度效应下齿轮副动力学分析温度效应下齿轮副动力学分析 ............................................................................. 10 2.1 齿轮扭振动力学模型 ........................................................................................... 10 2.2 齿轮动力学特性分析 ........................................................................................... 18 2.3 齿轮传动系统混沌控制 ....................................................................................... 29 2.4 本章小结 ............................................................................................................... 32 3 截割部关键零部件动载荷及强度分析截割部关键零部件动载荷及强度分析 ................................................................. 33 3.1 传动系统外部激励分析 ....................................................................................... 33 3.2 齿轮动载荷分析 ................................................................................................... 37 3.3 齿轮动态应力统计分析 ....................................................................................... 41 3.4 齿轮剩余强度分析 ............................................................................................... 45 3.5 本章小结 ............................................................................................................... 50 4 截割传动系统动态可靠性分析截割传动系统动态可靠性分析 ............................................................................. 51 4.1 齿轮动态可靠性研究 ........................................................................................... 51 4.2 可靠性的系统参数分析 ....................................................................................... 56 4.3 失效相关下传动系统动态可靠性 ....................................................................... 60 4.4 本章小结 ............................................................................................................... 65 5 齿轮传动系统实验与仿真齿轮传动系统实验与仿真 ..................................................................................... 67 5.1 负载突变模拟实验 ............................................................................................... 67 5.2 齿轮加载振动测试 ............................................................................................... 69 5.3 齿轮副瞬态动力学仿真 ....................................................................................... 71 VI 5.4 本章小结 ............................................................................................................... 73 6 结论与展望结论与展望 ............................................................................................................. 75 6.1 结论 ....................................................................................................................... 75 6.2 展望 ....................................................................................................................... 76 参考文献参考文献 ..................................................................................................................... 77 作者简作者简介介 ..................................................................................................................... 83 学位论文原创性声明学位论文原创性声明 ................................................................................................. 84 学位论文数据集学位论文数据集 ......................................................................................................... 85 VII Contents Abstract ...................................................................................................................... III Contents .................................................................................................................... VII List of Figures ............................................................................................................ IX List of Tables ........................................................................................................... XIV List of Variavles ........................................................................................................ XV 1 Introduction ............................................................................................................... 1 1.1 Origin of Subject ...................................................................................................... 1 1.2 Background and Significanceof Subject .................................................................. 1 1.3 Research Status at Home and Abroad ...................................................................... 3 1.4 Current problems ..................................................................................................... 8 1.5 Main research content .............................................................................................. 8 2 Dynamic analysis of gear pair under temperature effect .................................... 10 2.1 Torsional vibration dynamic model of gear .................................................. 10 2.2 Dynamic characteristics analysis of gear pair ........................................................ 18 2.3 Chaos cont