采煤机多惯导冗余定位精度提升方法研究.pdf
硕士学位论文 采煤机多惯导冗余定位精度提升方法研究 Research on Shearer’s Positioning Accuracy Optimal Based on Redundant Inertial Navigation System 作 者 鲁程 导 师王世博 教授 中国矿业大学 二〇二〇年五月 万方数据 学位论文使用授权声明 学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 万方数据 中图分类号 TD679 学校代码 10290 UDC 621 密 级 公开 中国矿业大学 硕士学位论文 采煤机多惯导冗余定位精度提升方法研究 Research on Shearer’s Positioning Accuracy Optimal Based on Redundant Inertial Navigation System 作 者 鲁程 导 师 王世博 申请学位 工学硕士学位 培养单位 机电工程学院 学科专业 机械电子工程 研究方向 智能采掘装备 答辩委员会主席 唐玮 评 阅 人 二○二○ 年 五 月 万方数据 致谢致谢 在矿大三年的研究生求学生涯悄然而逝,本科毕业后经历了工作中的磨砺, 求学时的忐忑与期待,让我对来之不易的学习机会倍加珍惜。感谢所有在我生命 中出现过的人和经历过的事,是你们使我深深地体会到知识改变命运。 首先要由衷地感谢我的导师王世博教授,我本科毕业九年后跨专业读研,没 有坚实的专业基础,没有名校的出身背景,没有应届生的青春年华,承蒙王老师 不弃,收我入门。王老师在为人处世方面的谆谆教诲、专业上的悉心指导,学生 铭记在心,心中的感激无以言表。 感谢李梅子、陈庆庆、崔新霞三位老师以及班长林达同学、书记游坤同学对 我们的服务与关怀感谢同一工作室硕士研究生黄山、赵少迪、刘琴、张磊、彭 振、董慧丽、曹靖宇、郝建伟、周恒、王旭、庄吉庆等带来的欢声笑语特别感 谢课题组博士研究生李雪峰、杨恩、曹波三位师兄,硕士研究生田野师兄,硕士 研究生窦希杰、伊世学、卢召栋、邹文才、王赛亚、宣统、谢洋、周悦、陈钱有、 马光明、李争、马修泽等师弟师妹,同级硕士研究生邱教娟、刘旭、孟庆丰、舒 子龙等同学,同门之情地久天长特别感谢张辉、孔维、向阳、王子超四位硕士 研究生在试验数据解算方面对我的帮助,以及师兄张博渊、李昂两位硕士在课题 遇到瓶颈时为我指点迷津。 特别感谢师兄王世佳博士研究生在考研与读研期间给 予我的帮助,四年间世佳师兄对我的帮助无法一一列举。特别感谢硕士研究生张 东东、张学城、朱有森、侯舒文、博士研究生张云长五位同学,同窗之情长存 特别感谢母校中国矿业大学的包容,收留我流浪的心灵,心灵有了归宿,从 此淡定从容。临别之际,唯有留恋与不舍。饮水思源,也特别感谢我的高中母校 安徽省潜山中学,高中三年在母校获取的知识使我受益终生。 在此我要特别感谢长期无条件支持我的家人。 感谢我的表弟郭江潮在我考研 期间给我提供的帮助。 特别感谢我的父母, 他们在本该退休的年纪还在辛勤工作, 支持我读研,让我没有后顾之忧。特别感谢岳父岳母的通情达理,感谢他们支持 我在本该挣钱养家的年纪去学习深造。特别感谢我的爱人荆童童,在我读研期间 独自一人照顾年幼的女儿,为支持我读研一人承受艰辛,感谢她为我和家庭付出 的一切。同时感谢我的女儿鲁昕,她是我求学的动力之一,能为女儿做榜样是爸 爸此生最大的荣幸。特别感谢在我最困难的时侯关心和帮助过我的所有人,若能 力所及,定当涌泉相报 最后非常感谢各位专家和评委们百忙之中参与评阅论文和答辩 万方数据 I 摘要摘要 采煤机定位技术作为长壁综采工作面智能化开采的关键技术之一, 对实现综 采工作面液压支架、刮板机、采煤机的“三机”协同工作,以及采煤机截割滚筒 的自动调高,刮板机的自动调直至关重要。惯性导航系统(简称惯导,Inertial Navigation System, INS) 和轴编码器组合的定位方式是实现采煤机定位的有效方 法,但惯性器件的漂移会造成惯导长时间运行的累积误差。在煤矿井下环境中, 单一惯导定位精度难以大幅度提升。因此,在现有技术条件下立足惯导本身,在 不借助外界信息辅助的情况下进一步提高采煤机惯导定位精度, 具有重要的意义。 针对此问题,本文进行了多惯导冗余的采煤机定位精度提升方法研究。主要完成 了如下工作,并得出了相关结论 1.以惯导与轴编码器组合的采煤机定位技术为基础建立了采煤机多惯导冗 余定位模型, 以三套惯导的位置信息为状态量, 以三套惯导之间的距离为量测量, 通过扩展卡尔曼滤波 (Extended Kalman Filter, EKF) , 对采煤机的位置进行估计, 再根据三套惯导的估计位置提出了三套惯导安装于采煤机坐标系坐标轴上时的 姿态角解算方法。多惯导冗余定位算法的参量分析表明航向角、俯仰角、惯导之 间的距离、三套惯导平面方向均为影响定位精度的参量。 2.建立了采煤机多惯导冗余定位算法的仿真模型,并通过惯导静态误差试验 确定了仿真试验中所要设置的惯导误差。 将仿真结果中扩展卡尔曼滤波器输出的 三套惯导估计位置绘制成空间三角形(估计三角形) ,通过分析估计三角形的空 间位置及其水平和竖直平面内投影的形状、惯导之间的估计距离、估计三角形以 各惯导为顶点的内角、估计三角形所在平面法向量偏移角度等因素,总结出了影 响多惯导冗余定位算法精度的原因,即三惯导估计三角形所在平面的法向量偏 移是影响多惯导冗余定位算法精度的主要原因, 估计三角形的位置偏移也会对多 惯导冗余定位算法的精度造成一定的影响。 通过仿真试验得出了采煤机运行规律 对定位精度的影响规律及仿真条件下多惯导最优的安装方式 定位精度随俯仰角 增大而提高,并且当航向角为0时定位精度最高;惯导之间距离为0.2m时采煤机 的定位精度最高; 正平面时采用α3等于80安装惯导采煤机的定位精度最高; 负平 面时采用α3等于60安装惯导采煤机的定位精度最高。 3.搭建了搭载 GPS-RTK 移动站的多惯导冗余定位地面移动试验平台,以高 精度的 GPS-RTK 移动站的运动轨迹作为参考真实轨迹,通过地面试验总结出三 套惯导的最优安装方式惯导之间距离为 0.2m 时采煤机的定位精度最高;正平 面采用 α3等于 90安装惯导采煤机的定位精度最高;负平面采用α3等于45安装 惯导采煤机的定位精度最高。又通过仿真结果与试验结果的对比分析,提出了惯 导的最优安装方式 即三套惯导水平安装 (正平面、 惯导之间距离为 0.2m、 α390) 。 万方数据 II 此外, 通过试验发现估计三角形的形状也是影响采煤机多惯导冗余定位算法定位 精度的因素之一。 该论文有图 73 幅,表 1 个,参考文献 90 篇。 关键词惯性导航;多惯导;冗余;定位方法;轴编码器 关键词惯性导航;多惯导;冗余;定位方法;轴编码器 万方数据 III Abstract As one of the most important technology for intelligent longwall minging, shearer positioning is pivotal for horizontal control, face alignment and combination of shearer, hydraulic supports and scraper conveyor. Inertial navigation system INS and enconder integrated navigation is an efficient to improve the accuracy of shearer positioning, but drift errors of inertial device will be accumulated for long time work. Merely one INS positioning accuracy can’t be improved obviously in underground coal mine circumstance. Hence, it is practically significant to improve shearer’s INS positioning accuracy using current technology and merely using INS without external ination assistances. Focusing on this point of view, shearer’s positioning accuracy optimal based on redundant INS was researched in this paper. The main tasks and relative conclusions as follows 1. Redundant INS shearer positioning model was established based on INS and coder integrated shearer positioning in which shearer’s postion was estimated through EKF in which the three INS positions were used as state quantities and distances among INS were used as measurement quantities. Then attitude angles calculating was proposed when the three INS were installed on axes of shearer coordinate frame. Parametric impact analysis of redundant INS postioning illustrates that heading, pitch, distances among INS and direction of three-INS-plane are all impacted parameters of accuracy. 2. Redundant INS shearer positioning simulation model was established and INS error of simulation test was acquired through static error test of INS. Positions of the three INS outputted by EKF filter was draw to be three-dimensional triangles estimated triangles, then the reasons which influences accuracy of redundant INS positioning algorithm was concluded through comparisons of factors which were locations of three- dimensional estimated triangles and its projection shapes on horizontal plane and vertical plane, estimated distances among INS, interior angles whose verts are the three INS, skewing of normal vector of the plane containing the estimated triangle, and so on skewing of normal vector of the plane containing the estimated triangle is main factor influenceing accuracy of redundant INS positioning algorithm and locational skewing of three-dimensional estimated triangle influences accuracy of redundant INS positioning algorithm in some extent. Influence of shearer running conditions and the most optimal installation of multi-INS was concluded under simulation conditions positioning accuracy rasied with pitch and reached the peak when heading is 0; the 万方数据 IV highest accuracy achieved when distances among INS is 0.2m; shearer positioning accuracy reached the hightest accuracy when INS installation makes α3 is 80 on positive plane; shearer positioning accuracy reached the hightest accuracy when INS installation makes α3 is 60 on negative plane. 3. A set of multi-INS redundant surficial moving device which carried GPS-RTK mobile station which provided high-accuracy track regarded as referenced real track was established. Through superficial test the most optimal installation of the three INS was concluded the highest accuracy achieved when distances among INS is 0.2m; shearer positioning accuracy reached the hightest accuracy when INS installation makes α3 is 90 on positive plane; shearer positioning accuracy reached the hightest accuracy when INS installation makes α3 is 45 on negative plane. Finally, the most optimal installation achieved through comparison and analysis of simulation results and test results the three INS are installed on horizontal plane positive plane, the distances among INS is 0.2m, α390. In addition, shape of the estimated triangle is also one of the factors influenced accuracy of redundant INS positioning algorithm, which was discovered by test. There are 73 figures, 1 table and 90 references in this dissertation. Keywords Inertial navigation; Multi-INS; Redundant; Positioning ; Coder 万方数据 V 目录目录 摘要摘要................................................................................................................................ I 图清单图清单......................................................................................................................... IX 表清单表清单........................................................................................................................ XV 变量注释表变量注释表 ............................................................................................................. XVI 1 1 绪论绪论............................................................................................................................ 1 1.1 课题来源 ................................................................................................................ 1 1.2 研究背景和意义 .................................................................................................... 1 1.3 研究现状 ................................................................................................................ 2 1.4 课题研究内容 ...................................................................................................... 13 2 2 采煤机多惯导冗余定位原理与算法采煤机多惯导冗余定位原理与算法 ..................................................................... 15 2.1 惯导定位基本原理 .............................................................................................. 15 2.2 采煤机多惯导冗余定位原理 .............................................................................. 17 2.3 采煤机多惯导冗余定位方法 .............................................................................. 18 2.4 参量影响分析 ...................................................................................................... 24 2.5 本章小结 .............................................................................................................. 25 3 3 采煤机多惯导冗余定位的仿真研究采煤机多惯导冗余定位的仿真研究 ..................................................................... 26 3.1 仿真模型 .............................................................................................................. 26 3.2 采煤机运行条件的影响 ...................................................................................... 29 3.3 惯导间距离的影响 .............................................................................................. 41 3.4 三套惯导平面方向的影响 .................................................................................. 43 3.5 本章小结 .............................................................................................................. 45 4 4 采煤机多惯导冗余定位试验研究采煤机多惯导冗余定位试验研究 ......................................................................... 47 4.1 采煤机多惯导冗余定位试验装置 ...................................................................... 47 4.2 试验结果 .............................................................................................................. 50 4.3 仿真与试验数据比较 .......................................................................................... 66 4.4 本章小结 .............................................................................................................. 67 5 5 总结与展望总结与展望 ............................................................................................................. 69 5.1 研究总结 .............................................................................................................. 69 5.2 研究展望 .............................................................................................................. 70 万方数据 VI 5.3 论文主要创新点 .................................................................................................. 71 参考文献参考文献 ..................................................................................................................... 72 附录附录.............................................................................................................................. 77 作者简历作者简历 ..................................................................................................................... 83 学位论文原创性声明学位论文原创性声明 ................................................................................................. 84 学位论文数据集学位论文数据集 ......................................................................................................... 85 万方数据 VII Contents Abstract .................................................................................................................... III List of Figures ............................................................................................................ IX List of Tables ............................................................................................................. XV List of Variables ...................................................................................................... XVI 1 Introduction ............................................................................................................... 1 1.1 Origin of Dissertation ............................................................................................ 1 1.2 Background and Significance ................................................................................ 1 1.3 Research Status ...................................................................................................... 2 1.4 Main Contents of the Research ............................................................................ 13 2 Principle and Algorithm of Redundant INS Shear Positioning .......................... 15 2.1 Fundamental of inertial navigation system .......................................................... 15 2.2 Principle of Redundant Inertial Navigation System Shearer Positioning ............ 17 2.3 of Redundant Inertial Navigation System Shearer Positioning .............. 18 2.4 Parametric Impact Analysis ................................................................................. 24 2.5 Chapter Summary ................................................................................................ 25 3 The Simulation Research for Redundant INS Positioning of Shear .... 26 3.1 Simulation Model ................................................................................................. 26 3.2 Influences of Shearer’s Running Conditions ....................................................... 29 3.3 Influences of Distances among INS ..................................................................... 41 3.4 The Influences of Plane Direction Contained the Three INS .............................. 43 3.5 Chapter Summary ................................................................................................ 45 4 Experimental Research of Shearer Positioning Based on Redundant INS Algorithm .................................................................................................................... 47 4.1 Experiment Device of Redundant INS Shearer Positioning ................................ 47 4.2 Test Results .......................................................................................................... 50 4.3 Comparison of Simulation Data and Experimental Data ..................................... 66 4.4 Chapter Summary ................................................................................................ 67 5 Conclusions and Expectation ................................................................................. 69 5.1 Conclusions .......................................................................................................... 69 万方数据