InSAR技术监测识别矿山断层变形的研究.pdf
硕士学位论文 InSAR 技术监测识别矿山断层变形的研究 Study on InSAR Technology Monitoring and Identifying Mine Fault Deation 作 者杨 隽 导 师吴 侃教授 中国矿业大学 二〇二一年五月 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 万方数据 中图分类号 学校代码 10290 UDC 密 级 公开 中国矿业大学 硕士学位论文 InSAR 技术监测识别矿山断层形变的研究 Study on InSAR Technology Monitoring and Identifying Mine Fault Deation 作 者 杨 隽 导 师 吴 侃 申请学位 工学硕士学位 培养单位 环境与测绘学院 学科专业 数字矿山与沉陷控制工程 研究方向 InSAR 技术与变形监测 答辩委员会主席 高井祥 评 阅 人 二○二一年五月 万方数据 致谢致谢 时光荏苒,不觉又到了一年的毕业季,这一次成了离别的主角,回首 7 年, 想把青葱的岁月和在中国矿业大学的点滴写成书里美丽纷飞的章节和化作人生 中珍贵的诗篇。 在这里度过的七个春秋让我从一个懵懂的少年成长为一个有希望、 有理想的青年,在这里遇到了德才兼备的老师和前辈,结识了志同道合的同学和 朋友,这里早已成为人生中的重要驿站。硕士论文完成之际停笔回想,内心感慨 万千,感谢那些陪我一路走来,帮助我、鼓励我、关心我的人,在这里真诚地说 一句谢谢 感谢我的导师吴侃教授,在硕士三年的求学生涯中,感恩相遇。在跟随吴老 师学习的过程中,早已被其严谨的学术态度、渊博的专业知识、谦和的处世原则 所折服,不管是学习还是生活,吴老师都在潜移默化中感染和启迪我。您始终要 求我们保持“学非探其花,要自拔其根”的求索精神,从入学到选题,专业上困 惑您都亲自指导,耐心讲授,在论文的撰写过程中,您总能拨开迷雾为我指明方 向。 生活中您是一位温文儒雅的长辈,声声问候和句句关怀总是能融化心中的阴 霾,您的言传身教学生必铭记于心。毕业之际,衷心道一句感谢 感谢周鸣老师对我学习和生活中的帮助,深入科研一线,锻炼实操能力,生 活中的幽默风趣总是能让我保持积极乐观的学习态度。感谢李亮副教授、周大伟 副教授在选题过程中的大力支持和指导。 感谢刁鑫鹏博士研究方向上的指引以及 遇到困难时的悉心指导。感谢王瑞博士、姜岳博士在平时学习和生活中关心和帮 助。 感谢段志鑫、单帅帅、刘琪、孙杰、李旺、王坚、陈箴龙、曹兴砚等师兄师 姐对我的照顾, 你们身体力行的教会我如何成为一名合格的研究生。 感谢席宝顺、 张弛、翟志宇、王文娜、亓立壮、李昱昊、吴志聪、王凯等师弟师妹们对我的帮 助,以及感谢徐勇、吴双、顾元元、郭良林、贾秉松、董祥各位在生活和学习中 的陪伴,与你们共度了美好而充实的三年。感谢 B305 所有的小伙伴 感谢我的室友袁慕策、 白登辉、 余志浩, 谢谢你们三年来对我的包容和照顾, 与你们相处的快乐时光值得回忆和珍藏。 感谢中国矿业大学提供给我一个开放包容、求知好学的环境;感谢环境与测 绘学院提供一个专业而全面的专业视野;感谢所有帮助和关心我的前辈老师,你 们的无私和敬业深深地影响着我。 感谢我的父母和家人,你们的笑容是我不断前进的动力源泉,你们的关心和 支持是我一往无前最为坚实的力量,谢谢你们 万方数据 I 摘摘 要要 国民经济快速发展的同时“三下”压煤也日益增多,导致多数矿井生产单位 的生产规划由简单的易采区转向地质构造复杂的区域。因此,开采过程中工作面 的影响不可避免的会波及到断层面, 研究断层诱发的地表异常形变规律对于采掘 工作面的合理规划以及地表建构筑物的保护提供理论基础和参考依据。本文主 要针对采矿区断层构造下的特殊移动规律,以 InSAR 技术为研究手段,以峰峰 矿区为工程背景,通过理论分析、模型构建、模拟实验、实例分析等主要研究思 想对断层影响下的地表形变异常识别特征以及地表移动规律进行研究与探索。 主 要的工作内容与成果如下 (1)分析了矿区地表开采沉陷的基本特征以及 InSAR 技术在矿区变形监测 的视线向模糊问题, 针对此问题提出一种结合矿区开采沉陷规律的三维解算方法, 利用开采引起的地表水平移动与倾斜之间的函数关系作为约束条件构建单视线 向三维变形解算模型。 通过模拟的三维形变场对该方法进行精度验证, 结果表明, 东西向水平移动、南北向水平移动和垂直向下沉的解算结果均方根误差分别为 11.23mm、8.76mm、15.32mm。 (2)利用 SAR 历史数据解算峰峰矿区九龙矿的地表三维形变场,综合地质 资料, 对比分析断层影响下与无断层影响的地表移动的识别特征,研究结果表明 断层引发地表异常形变的识别特征主要分为三个方面一是地表变形,断层面的 活化会影响形变在岩体内部的传递从而在地表形成明显“阻隔线” ,并且在三维 形变场中, 地表出现与断层发育趋势一致的 “水平移动带” ; 二是开采影响范围, 断层的活化会使得工作面的影响范围产生变化, 在本文的监测结果中断层对于形 变的传递具有增大效应;三是剖面形态,断层的活化导致地表下沉曲线出现不连 续的断点,并在地表露头处出现台阶状下沉。 (3)结合矿区沉陷的时空分析方法,基于时序 InSAR 的监测结果,研究地 表变形的时空特征与响应关系。 地表变形的时间特征通过地表点的时间下沉曲线 进行分析,断层活化间接影响的地表沉降表现为非连续性,其值大小与断层的活 化程度有关;地表变形的空间特征利用 InSAR 监测面状信息的优点对研究区进 行全局分析,探讨了断层影响区域地表变形的发育过程,通过对结果的归一化处 理计算沉降梯度并划定地表建筑物损害区域; 井下开采与地表变形的响应关系为 工作面距断层 160m 时,断层受采动的影响开始活化,并且在工作面的推进过程 中,断层间接影响区域的地表变形具有滞后性。 (4)利用开采后覆岩内部的移动特征整体遵循空间守恒原则,结合岩层控 制的力学理论讨论在有无断层情况下的岩梁力学模型,通过分析可得,当岩层的 万方数据 II 一端存在断层弱面时会因无法约束梁端的自由旋转而产生弯曲和断裂, 断层面倾 角大于岩层垮落角时, 岩体在上部荷载和自重的作用下发生倾斜并在断层面形成 离层空间,离层空间又会进一步以形变的方式传递到地表,出现异常形变。通过 构建离层空间的几何模型, 得到影响其大小的主要因素为 煤层厚度、 煤层倾角、 开采深度、断层倾角、保护煤柱宽度。 关键词关键词InSAR;开采沉陷;时序监测;三维变形;矿山断层; 万方数据 III Abstract With the rapid development of the national economy, the number of “three unders“ coal pressure has also increased, leading to the shift from simple easy mining areas to areas with complex geological structures in the production planning of most mine production units. Therefore, the influence of the working face in the mining process will inevitably spread to the fault plane. The study of the abnormal surface deation law induced by the fault provides a theoretical basis and reference basis for the rational planning of the mining face and the protection of surface structures. This article mainly focuses on the special movement law under the fault structure in the mining area, using InSAR technology as the research and Fengfeng mining area as the engineering background, through theoretical analysis, model construction, simulation experiment, case analysis and other main research ideas on the surface under the influence of the fault. Research and explore the characteristics of deation anomaly recognition and the law of surface movement. The main work content and results are as follows 1 Analyzed the basic characteristics of mining subsidence in mining area and the fuzzy line of sight of InSAR technology in the deation monitoring of mining area. Aiming at this problem, a three-dimensional solution combining mining subsidence law in mining area is proposed, which uses the difference between the horizontal movement caused by mining. The functional relationship of is used as a constraint to construct three-dimensional deation solution model. The accuracy of the is verified by the simulated three-dimensional deation field. The results show that the root mean square error of the solution results of horizontal movement in east-west direction, horizontal movement in north-south direction, and vertical sinking are 11.23mm, 8.76mm, 15.32mm, respectively. 2 Combined with the time-space analysis of mining area subsidence, based on the time-series InSAR monitoring results, the time-space characteristics and response relationship of surface deation are studied. The temporal characteristics of surface deation are analyzed through the time-sinking curve of surface points. The surface subsidence indirectly affected by fault activation is shown as discontinuity, and its value is related to the activation degree of the fault; the spatial characteristics of surface deation are monitored by InSAR surface ination the research area are analyzed globally, and the development process of the surface deation in the area affected by the fault is discussed. The settlement gradient is calculated through the 万方数据 IV normalization of the results and the damage area of the surface building is delineated; the response relationship between underground mining and surface deation is work When the surface is 160m away from the fault, the fault begins to activate under the influence of mining, and during the advancement of the working face, the surface deation in the area indirectly affected by the fault has hysteresis. 3 Combined with the time-space analysis of mining area subsidence, based on the time-series InSAR monitoring results, the time-space characteristics and response relationship of surface deation are studied. The temporal characteristics of surface deation are analyzed through the time-sinking curve of surface points. The surface subsidence indirectly affected by fault activation is shown as discontinuity, and its value is related to the activation degree of the fault; the spatial characteristics of surface deation are monitored by InSAR surface ination the advantages of the research area are analyzed globally, and the development process of the surface deation in the area affected by the fault is discussed. The settlement gradient is calculated through the normalization of the results and the damage area of the surface building is delineated; the response relationship between underground mining and surface deation is work When the surface is 160m away from the fault, the fault begins to activate under the influence of mining, and during the advancement of the working face, the surface deation in the area indirectly affected by the fault has hysteresis. 4 After mining, the internal movement characteristics of the overlying rock follow the principle of space conservation as a whole, combined with the mechanical theory of rock strata control, to discuss the rock beam mechanics model in the presence or absence of faults. It is impossible to restrain the free rotation of the beam end to produce bending and fracture. When the inclination angle of the fault plane is greater than the collapse angle of the rock layer, the rock mass will tilt under the action of the upper load and its own weight and a separation space on the fault plane. The separation space will be further reduced. The deation is transmitted to the surface, and abnormal deation occurs. By constructing a geometric model of the separation space, the main factors affecting its size are obtained the thickness of the coal seam, the inclination of the coal seam, the mining depth, the inclination of the fault, and the width of the protective coal pillar. Keywords InSAR; mining subsidence; timing monitoring; three-dimensional deation; mine fault; 万方数据 V 目目 录录 摘摘 要要 ........................................................................................................................... I 目目 录录 .......................................................................................................................... V 图清单图清单 ........................................................................................................................ IX 表清单表清单 ....................................................................................................................... XII 1 绪论绪论 ........................................................................................................................... 1 1.1 概述..................................................................................................................... 1 1.2 国内外研究现状..................................................................................................... 2 1.4 存在的主要问题..................................................................................................... 8 1.3 研究内容................................................................................................................. 9 1.4 论文结构安排....................................................................................................... 10 1.6 本章小结............................................................................................................... 11 2 InSAR 形变监测理论基础形变监测理论基础 ...................................................................................... 13 2.1 InSAR 理论基础 ................................................................................................... 13 2.2 DInSAR 形变监测原理......................................................................................... 17 2.3 InSAR 时序分析方法 ........................................................................................... 23 2.4 本章小结............................................................................................................... 25 3 单视线向单视线向 DInSAR 反演矿区地表三维形变场反演矿区地表三维形变场 ..................................................... 26 3.1 InSAR 监测采矿区局限性分析 ........................................................................... 26 3.2 单视线向 DInSAR 提取移动与变形 ................................................................. 30 3.3 模拟实验与精度评............................................................................................... 34 3.4 本章小结............................................................................................................... 38 4 基于时序基于时序 InSAR 技术的形变监测分析技术的形变监测分析................................................................ 39 4.1 InSAR 监测技术方案 ........................................................................................... 39 4.2 SBAS_InSAR 技术的时序形变监测 ................................................................... 44 4.3 基于水准测量的基准补偿与精度评定............................................................... 52 4.4 本章小结............................................................................................................... 58 5 断层影响下地表移动规律研究断层影响下地表移动规律研究 ............................................................................. 59 5.1 基于三维形变场的形变异常监测与识别........................................................... 59 5.2 基于时序 SAR 监测断层形变的时空演化规律分析 ......................................... 66 5.3 活化断层的岩层形变传递分析........................................................................... 79 万方数据 VI 5.4 本章小结............................................................................................................... 85 6 总结与展望总结与展望 ............................................................................................................. 86 6.1 研究结论............................................................................................................... 86 6.2 不足及展望........................................................................................................... 88 参参考文献考文献 ..................................................................................................................... 89 作者简历作者简历 ..................................................................................................................... 95 论文原创性声明论文原创性声明 ......................................................................................................... 96 学位论文数据集学位论文数据集 ......................................................................................................... 97 万方数据 VII Contents Abstract ......................................................................................................................... I Contents ....................................................................................................................... V List of Figures ............................................................................................................ IX List of Tables ............................................................................................................. XII 1 Introduction ............................................................................................................... 1 1.1 Introduction .............................................................................................................. 1 1.2 Domestic and Foreign Research Results.................................................................. 2 1.4 Main Problem........................................................................................................... 8 1.3 Research Content ..................................................................................................... 9 1.4 Paper Structure Arrangement ................................................................................. 10 1.6 Chapter Summary .................................................................................................. 11 2 InSAR Deation Monitoring Theoretical Basis ............................................. 13 2.1 InSAR Theoretical Basis ........................................................................................ 13 2.2 DInSAR Monitoring Principle ............................................................................... 17 2.3 InSAR Time Series