基于探地雷达的煤岩界面识别技术研究.pdf
工程硕士专业学位论文 基于探地雷达的煤岩界面识别技术研究 Research on Coal-rock Interface Recognition Technology Based on Ground Penetrating Radar 国家重点研发计划“特厚煤层综放开采煤矸精准识别技术” (编号2018YFC0604503)资助 作 者杨光照 导 师宋 雷 研究员 李海鹏 副教授 张小俊 高级工程师 中国矿业大学 二〇一九年五月 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 万方数据 中图分类号 TU112.7 学校代码 10290 UDC 264 密 级 公开 中国矿业大学 工程硕士专业学位论文 基于探地雷达的煤岩界面识别技术研究 Research on Coal-rock Interface Recognition Technology Based on Ground Penetrating Radar 作 者 杨光照 导 师 宋雷 李海鹏 张小俊 申请学位 工程硕士专业学位 培养单位 力学与土木工程学院 学科专业 建筑与土木工程 研究方向 岩土工程检测技术 答辩委员会主席 林鸿苞 评 阅 人 周 彪、张明伟 二○一九年五月 万方数据 致谢致谢 一晃七年转瞬即逝,七年间矿大母校给予了我太多,教会了我专业能力,培 养了我情操道德,使我认识了很多良师益友,求学期间,收益匪浅。值此母校诞 辰 110 周年之际,向母校及所有学业道路上帮助过我的人深表感谢。 本文是在导师宋雷研究员的悉心指导下完成的, 从论文的多次选题及后续进 展过程中的种种细节,无不倾注了导师的智慧及心血,在地球物理学方面,从读 研之前的一无所知到现在可以较得心应手的进行研究, 归功于导师一次次的教学 及培养,是导师的一次次付出才得以使我顺利完成论文,在此,特向您致以我崇 高的敬意及衷心的感谢此外宋老师敏锐的洞察力、严谨的治学态度、渊博的专 业知识、精益求精的科学态度、绿色健康的生活作风及平易近人的处事风格,也 深深影响着我,这些优秀的品质也使我受益良多。 此外,特别感谢李海鹏副教授及校外导师张小俊高级工程师。在宋老师出国 访学的一年中,李老师在学习、生活上给予了莫大的关心和帮助,论文的顺利完 成离不开李老师的付出校外导师张小俊平易近人,工程实践经验丰富而深厚, 做事严谨认真,在专业实践方面给予极大的指导,实习期间更是对我照顾有加, 对我的职业发展影响很大, 在此也衷心感谢校外导师张小俊提供的实习机会及对 我职业发展的培养 感谢深部国家重点实验室岩土所所有老师在三年中对我生活和学习上的帮 助和支持, 在此, 衷心感谢杨维好教授、 黄家会教授、 岳丰田教授、 王衍森教授、 崔振东教授、张勇副教授、张驰老师、韩涛老师、张涛老师、石荣剑老师、杨志 江老师、陆路老师、张超实验员,谢谢你们 感谢师兄张文亮、陈贵武、王煜、王国柱、李茂强及师弟陈文学、薛可可对 我论文的指导和帮助,没有你们一次次的帮助,论文是很难顺利开展并按时完成 的,谢谢你们 感谢室友谢德琦、闫金其、任明辉、同学黄灿灿七年的陪伴,七年同学情毕 生难忘,谢谢你们七年来生活上的照顾和学业上的帮助,谢谢你们 感谢七年间在矿大认识的各种朋友, 是大家让我七年的大学生活变得丰富多 彩 感谢实验室所有兄弟姐妹,同处一室共同学习,谢谢你们三年来的帮助 感谢父母的养育之恩,感谢亲人的默默支持,你们就是我的精神支柱,是我 永远坚强的后盾 衷心感谢各位专家、教授和学者对本文的审阅和批评指正 万方数据 I 摘摘 要要 随着能源结构的深化改革,煤炭开采领域也向着智能化发展,绿色、高效、 安全是发展研究的重点。而开采过程中,由于受环境等各种因素的影响,采煤机 对于煤岩界面的确定还主要以人工观察的方式进行识别, 而探地雷达具有测试速 度快、精度高等优点,将探地雷达用于煤岩界面的识别,并集成于采煤机,实现 无人化开采是本文的初衷。 本文作为前期研究, 通过正演模拟、 物理试验的方法, 对煤岩界面的探地雷达响应进行研究, 并使用神经网络对界面的智能识别作简单 探索。 通过使用探地雷达, 对华北地区跃进煤矿及华东地区赵楼煤矿煤岩介质的相 对介电常数使用 3 种不同的室外探地雷达测试方法(已知目标体深度法、层状反 射体法、透射测量法)进行了测试,并对煤样介质的含水率与介电常数的关系进 行了研究。 本文采用有限时域差分法,对影响煤岩界面探测的变量(界面形状、夹矸情 况、含水含气裂隙)进行了正演模拟,总结了探地雷达在各种变量差异下的响应 特征; 通过正演模拟研究了不同介电常数的煤岩介质组合对探地雷达探测效果的 影响,总结了各种煤岩介质组合下探测效果;通过实际地质建立了正演模型,并 使用蝶形天线进行了模拟, 并给出了随机噪声影响下有效信号的可识别范围及信 号处理措施。 使用煤岩介质相互堆叠的方法, 用华北跃进煤矿及华东赵楼煤矿两地的煤岩 介质模拟了与正演模型相对应的煤岩地质情况,通过 Pulse EKKO 探地雷达对试 验模型中的煤岩界面位置进行了测量,总结了实测效果下的煤岩界面响应;并且 用砂浆连接模型,模拟了界面紧密连接的情况;通过物理试验,对两地不同煤岩 介质的测试效果也做了总结。 为了使煤岩界面的响应信息更加清晰,使用常规处理手段、预测反褶积手段 及“三瞬”特征提取等数据处理方法,对试验测得的数据进行分析处理,增强了 有效信号的响应,抑制了多次波等干扰信号的影响。 文章最后,通过实验所得的数据,建立了三层结构的 BP 神经网络,通过单 道波数据对特征参数进行提取, 组成输入层数据, 通过网络多次迭代的学习训练, 完成煤岩界面的预测识别;此外,通过设立独立样本和综合样本两种方式的不同 训练,总结了各种情况下预测识别在不同样本训练下的适用性。 本文共有图 124 幅,表 49 个,参考文献 88 篇。 关键词关键词煤岩界面;探地雷达;相对介电常数; “三瞬”特性;BP 神经网络 万方数据 II Abstract With the deepening re of the energy structure, the field of coal mining is also moving towards intelligent development. Green, high efficiency and safety are the focus of development research. In the mining process, due to various factors such as the environment, the coal mining machines determination of the coal-rock interface is mainly identified by manual observation. The ground-penetrating radar has the advantages of fast test speed and high precision, and will be used for ground penetrating radar. The identification of the coal-rock interface and integration into the shearer to achieve unmanned mining is the original intention of this paper. As a preliminary study, this paper studies the ground penetrating radar response of coal-rock interface through forward modeling and physical test s, and uses neural network to make a simple exploration of the intelligent recognition of the interface. Through the use of ground penetrating radar, three different outdoor ground penetrating radar test s are used for the relative dielectric constants of the coal- rock media of Yuejin Coal Mine in North China and Zhaolou Coal Mine in East China known target depth , layered reflector , The transmission measurement was tested and the relationship between the water content and the dielectric constant of the coal sample medium was investigated. In this paper, the finite-time difference is used to simulate the variables affecting the coal-rock interface interface shape, stalk condition, water-bearing gas- bearing fissure, and the response characteristics of ground penetrating radar under various variables are summarized. The effect of coal-rock media combination with different dielectric constants on the detection effect of ground penetrating radar is studied by forward modeling. The detection effects of various coal-rock media combinations are summarized. The forward modeling is established through actual geology, and the butterfly antenna is used. The simulation is carried out, and the identifiable range and treatment measures of the effective signal under the influence of random noise are given. Using the of stacking coal and rock media, the coal and rock media corresponding to the forward model were simulated by the coal-rock media of the Yuejin Coal Mine in North China and the Zhaolou Coal Mine in East China. The coal rock in the experimental model was tested by PulseEKKO ground penetrating radar. The interface position was measured, and the coal-rock interface response under the 万方数据 III measured effect was summarized. The mortar connection model was used to simulate the tight connection of the interface. Through the physical test, the test results of different coal-rock media in the two places were also summarized. In order to make the response ination of the coal-rock interface more clear, using conventional processing s, predictive deconvolution means and “three- instant“ feature extraction and other data processing s, the experimentally measured data is analyzed and processed, and the response of the effective signal is enhanced. The influence of interference signals such as multiple waves is suppressed. At the end of the paper, through the experimental data, a BP neural network with three-layer structure is established. The characteristic parameters are extracted by single-channel data to layer data. The learning and training of multiple iterations through the network can complete the prediction of coal-rock interface. Identification; In addition, the applicability of predictive recognition in various situations under different sample training is summarized by establishing different trainings in both independent and integrated samples. This paper has 124 pictures, 49 tables and 88 references. Keywords Coal rock interface; Ground penetrating radar; Relative dielectric constant; “Three Instantaneous“ Characteristics; BP Neural Network. 万方数据 IV 目目 录录 摘摘 要要............................................................................................................................ I 目目 录录......................................................................................................................... IV 图清单图清单...................................................................................................................... VIII 表清单表清单........................................................................................................................ XV 变量注释表变量注释表 .......................................................................................................... XVIII 1 绪论绪论......................................................................................................................... 1 1.1 研究背景及研究意义 ......................................................................................... 1 1.2 国内外研究现状 ................................................................................................. 2 1.3 研究目标、研究内容与研究方法 ................................................................... 12 2 跃进煤矿、赵楼煤矿煤岩介质介电常数测试跃进煤矿、赵楼煤矿煤岩介质介电常数测试 .................................................. 15 2.1 介电常数的意义及测量方法的确定 ............................................................... 15 2.2 两地煤样及含水率测试 ................................................................................... 17 2.3 介电常数测试过程 ........................................................................................... 20 2.4 两地煤样介电常数分析 ................................................................................... 24 2.5 本章小结 ........................................................................................................... 26 3 煤岩界面的探地雷达正演模拟研究煤岩界面的探地雷达正演模拟研究 .................................................................. 27 3.1 正演软件及时域有限差分法 ........................................................................... 27 3.2 煤岩界面模型介质变量影响研究 ................................................................... 32 3.3 合理可探测研究 ....................................................................................... 55 3.4 模拟实地正演研究 ........................................................................................... 62 3.5 本章小结 ........................................................................................................... 69 4 煤岩界面物理试验研究煤岩界面物理试验研究 ...................................................................................... 71 4.1 试验准备 ........................................................................................................... 71 4.2 实验过程及结果 ............................................................................................... 76 4.3 本章小结 ........................................................................................................... 90 5 煤岩界面模型信号处理及分析煤岩界面模型信号处理及分析 .......................................................................... 91 5.1 探地雷达的数据形式及处理软件 ................................................................... 91 5.2 常规处理 ........................................................................................................... 93 5.3 预测反褶积处理 ............................................................................................... 95 5.4 希尔伯特变换处理分析 ................................................................................. 100 5.5 本章小结 ......................................................................................................... 103 万方数据 V 6 基于神经网络方法的煤岩界面识别基于神经网络方法的煤岩界面识别 ................................................................ 105 6.1 神经网络理论 ................................................................................................. 105 6.2 BP 神经网络在煤岩界面识别上的方法 ....................................................... 106 6.3 煤岩界面数据的神经网络识别 ..................................................................... 111 6.4 本章小结 ......................................................................................................... 122 7 结论与展望结论与展望 ........................................................................................................ 123 7.1 结论 ................................................................................................................. 123 7.2 展望 ................................................................................................................. 124 参考文献参考文献 ................................................................................................................... 125 作者简历作者简历 ................................................................................................................... 129 万方数据 VI Contents Abstract ........................................................................................................................ II Contents ..................................................................................................................... VI List of Figures ......................................................................................................... VIII List of Table .............................................................................................................. XV List of Variables ................................................................................................... XVIII 1 Introduction ........................................................................................................... 1 1.1 Research Background and Significance .............................................................. 1 1.2 Present Research States ....................................................................................... 2 1.3 Research Objectives, Contents and s ..................................................... 12 2 Measurement of Dielectric Constant of Coal and Rock in Yuejin Coal Mine and Zhaolou Coal Mine ....................................................................................... 15 2.1 Significance of Dielectric Constant Determination of Measurement .. 15 2.2 Coal Sample and Water Content Testing ........................................................... 17 2.3 Dielectric Constant Measurement Process ........................................................ 20 2.4 Analysis of Dielectric Constants of Coal Samples ............................................ 24 2.5 Summary ........................................................................................................... 26 3 Simulation of GPR for Coal-Rock Interface .................................................... 27 3.1 Simulation Software and Finite Difference Time Domain .................. 27 3.2 Study on the Influence of Medium Variables on Coal-Rock Interface Model .. 32 3.3 Research on Reasonable ............................................................................ 55 3.4 Simulated Field Study ....................................................................................... 62 3.5 Summary ........................................................................................................... 69 4 Experimental Study on Coal-Rock Interface ................................................... 71 4.1 Test Preparation ................................................................................................. 71 4.2 Experimental Process and Results ..................................................................... 76 4.3 Summary ........................................................................................................... 90 5 Signal Processing and Analysis of Coal-rock Interface Model ....................... 91 5.1 Data and Software of GPR ...................................................................... 91 5.2 Conventional Processing of GPR Images ......................................................... 93 5.3 Predictive Deconvolution Processing ...........