综采工作面模拟装置与模拟试验研究.pdf
工程硕士专业学位论文 综采工作面模拟装置与模拟试验研究 Research on Simulation Device and Simulation Test of Longwall Mining 作 者刘 旭 导 师刘万里 讲师 中国矿业大学 二〇一九年五月 万方数据 万方数据 学位论文使用授权声明 学位论文使用授权声明 本人完全了解中国矿业大学有关保留、 使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权, 即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 万方数据 万方数据 中图分类号 TD421 学校代码 10290 UDC 621 密 级 公开 中国矿业大学 应用型硕士学位论文 综采工作面模拟装置与模拟试验研究 Research on Simulation Device and Simulation Test of Longwall Mining 作 者 刘 旭 导 师 刘万里 申请学位 工程硕士专业 培养单位 机电工程学院 学科专业 机械工程 研究方向 矿山机械 答辩委员会主席 评 阅 人 二〇一九 年 五 月 万方数据 万方数据 致谢 致谢 特别感谢我的导师刘万里老师, 没有导师的培养、鼓励和提供的优越科研平 台,本论文是不可能顺利完成的。导师知识渊博,学问深邃,思路开阔,治学严 谨,学术思想敏锐,学术道德高尚,言传身教中不仅使我在学术方面获益,更对 我今后的工作和人生道路产生深远的影响。 从论文的选题到定稿, 无处不渗透着刘万里老师的心血与辛劳。 在论文即将 完成之际,我谨向刘万里老师表示我最衷心的感谢,致以深深的敬意。 感谢郭广泉工程师在试验台搭建以及试验设备方面给予的大力支持。 感谢杨恩博士研究生、 曹波博士研究生在论文试验方面给予的协助, 感谢王 世佳博士研究生在试验方面给予的大力支持与帮助。 感谢张辉研究生在软件程序方面基于的支持, 鲁程硕士研究生在试验台方面 给予的帮助, 王子超硕士研究生在硬件方面给予的关照,孟庆丰硕士研究生在试 验方面给予的宝贵意见、 孔维硕士研究生、 向阳硕士研究生、 舒子龙硕士研究生、 邱教娟硕士研究生、王赛亚硕士研究生、皱文才硕士研究生、宣统硕士研究生、 伊世学硕士研究生、卢召栋硕士研究生、周悦硕士研究生、谢阳硕士研究等在我 攻读研究生期间给予的关心和帮助。 感谢中国矿业大学机电学院对我的培养。 特别感谢父母多年来的养育之恩以及他们无私的付出。 感谢国家自然科学基金委联合基金项目 “融合地理信息和采煤机位姿的工 作面自适应调高与调直原理研究(U1510116) ”的大力资助。 最后,感谢各位评审专家在百忙之中对本论文的审阅 万方数据 万方数据 I 摘摘 要要 煤矿综采自动化技术是实现煤炭安全、高效回采的重要保障,是国家经济发 展所需煤炭供应的先决条件。 中国制造 2025能源装备实施方案中,将煤炭 绿色智能采掘装备列入能源装备发展任务之一;国家“十三五”规划在能源关键 技术装备中也明确提出加快推进煤炭自动化、 智能化、 无人开采技术的研发应用; 煤炭工业也开始不断深入探索 “互联网人工智能自动开采” 的绿色开采新模式。 本文对自动化综采工作面关键技术进行探索,主要研究内容如下 (1)结合自动化综采工作面工艺及技术特点,搭建了综采工作面模拟试验 平台,对试验平台电控系统、机械系统以及上位机软件进行了分析与设计。 (2) 采煤机定位作为工作面自动化生产的关键技术, 其精确程度尤为重要。 由于定位系统存在不可避免的漂移等误差, 一段时间过后定位效果无法满足工作 需求。本文提出了适用于采煤机定位技术的平滑算法,采煤机每完成一刀走到端 面时,利用平滑算法进行采煤机轨迹校正。 (3)由于采煤机轨迹生成的时间不同,其对应的刮板输送机调直算法也不 同。在基于实时采煤机轨迹的刮板输送机调直试验中,通过试验证明了该调直算 法对直线度误差有改善作用。 (4)在基于端面校准后采煤机轨迹的刮板输送机调直试验中,结果不仅表 明该调直方法对直线度误差有改善作用, 同时证明了基于更高精度的采煤机定位 轨迹的调直方法效果优于基于实时采煤机轨迹的调直方法。 (5)对刮板输送机直线度的影响因素进行了研究,借鉴了基于极差理论的 刮板输送机直线度预测模型, 通过改变推杆的推移误差正态分布范围来检验该模 型的准确性。 本论文有图 63 幅,表 14 个,参考文献 119 篇 关键词关键词模拟试验,刮板输送机,调直,采煤机定位,平滑算法; 万方数据 II Abstract Coal mine fully mechanized mining automation technology is an important guarantee for achieving safe and efficient mining of coal, and is a prerequisite for coal supply for national economic development. In the “China Manufacturing 2025 - Energy Equipment Implementation Plan“, coal green intelligent mining equipment is included in one of the energy equipment development tasks; the national “13th Five-Year Plan“ also clearly proposes to accelerate the automation and automation of coal in key energy technology equipment. The development and application of unmanned mining technology; the coal industry has also begun to explore the new mode of green mining of “Internet artificial intelligence automatic mining”. This paper explores the key technologies of automated fully mechanized mining face. The main research contents are as follows 1 Combining the process and technical characteristics of the automatic mechanized mining face, the simulation test plat of the fully mechanized mining face was built, and the electronic control system, mechanical system and PC software of the test plat were analyzed and designed. 2 The location of the shearer is the key technology for automated production of the working face, and its accuracy is particularly important. Due to the inevitable drift and other errors in the positioning system, the positioning effect cannot meet the working requirements after a period of time. In this paper, a smoothing algorithm is applied to the coal mining machine positioning technology. When the shearer walks to the end face, the smoothing algorithm is used to correct the shearer trajectory. 3 Due to the different time of the shearer trajectory generation, the corresponding straightening algorithm of the scraper conveyor is also different. In the straightening test of the scraper conveyor based on the real-time shearer trajectory, it is proved by experiments that the straightening algorithm can improve the straightness error. 4 In the straightening test of the scraper conveyor based on the shearer track after the end face calibration, the results not only show that the straightening can improve the straightness error, but also prove the positioning trajectory of the shearer based on higher precision. The straightening is better than the straightening based on the real-time shearer trajectory. 5 The factors affecting the straightness of the scraper conveyor are studied. The straightness prediction model of the scraper conveyor based on the range theory is used. 万方数据 III The accuracy of the model is verified by changing the range of the normal distribution of the push error . This paper has 63 pictures, 14 tables, and 119 references. Key words simulation test, scraper conveyor, straightening, shearer positioning, smoothing algorithm; 万方数据 IV 目录 摘要摘要................................................................................................................................ I 目录目录............................................................................................................................. IV 图清单图清单...................................................................................................................... VIII 表清单表清单........................................................................................................................ XII 变量注释表变量注释表 ............................................................................................................. XIII 1 绪论绪论............................................................................................................................ 1 1.1 课题来源 ................................................................................................................. 1 1.2 研究背景 ................................................................................................................. 1 1.3 自动化综采工作面研究现状 ................................................................................. 2 1.4 自动化综采工作面模拟试验方法研究现状 ....................................................... 18 1.5 研究内容 ............................................................................................................... 20 2 自动化综采工作面模拟试验平台研制自动化综采工作面模拟试验平台研制 ................................................................. 21 2.1 综采工作面模拟试验平台整体方案 .................................................................... 21 2.2 模拟试验台机械系统设计 ................................................................................... 23 2.3 模拟试验台电控系统设计 ................................................................................... 24 2.4 模拟试验台的试验方法 ........................................................................................ 27 2.5 上位机软件设计 .................................................................................................... 28 2.6 本章小结 ................................................................................................................ 32 3 采煤机定位数据事后处理算法采煤机定位数据事后处理算法 .............................................................................. 33 3.1 平滑算法概述 ........................................................................................................ 33 3.2 前向卡尔曼滤波器设计 ........................................................................................ 33 3.3 定位数据时候处理过程 ........................................................................................ 39 3.4 采煤机定位数据后处理试验研究 ........................................................................ 43 3.5 本章小结 ................................................................................................................ 45 4 基于采煤机定位数据后处理的刮板输送机调直研究基于采煤机定位数据后处理的刮板输送机调直研究 .......................................... 46 4.1 基于采煤机轨迹后处理的调直原理 .................................................................... 46 4.2 调直算法的仿真研究 ............................................................................................ 48 4.3 调直试验研究 ........................................................................................................ 54 4.4 刮板输送机直线度影响因素研究 ........................................................................ 57 4.5 本章小结 ................................................................................................................ 63 万方数据 V 5 总结和展望总结和展望 ............................................................................................................. 64 5.1 研究总结 ............................................................................................................... 64 5.2 研究展望 ............................................................................................................... 65 参考文献参考文献 ..................................................................................................................... 66 作者简历作者简历 ..................................................................................................................... 66 学位论文原创性声明学位论文原创性声明 ................................................................................................. 75 学位论文数据集学位论文数据集 ......................................................................................................... 76 万方数据 VI Contents Abstract ........................................................................................................................ II Contents ..................................................................................................................... VI List of Figures ......................................................................................................... VIII List of Tables ............................................................................................................. XII List of Variables ...................................................................................................... XIII 1 Introduction ............................................................................................................... 1 1.1 Origin of Dissertation .............................................................................................. 1 1.2 Background .............................................................................................................. 1 1.3 Research Status of Longwall Minging ..................................................................... 2 1.4 Research Status of Simulated Experimental s for Longwall Minging ...... 18 1.5 Research Ccontents ................................................................................................ 20 2 Development of Simulation Test Plat for Automated Fully Mechanized Mining Face ................................................................................................................ 21 2.1 Comprehensive Plan of Simulation Experiment Plat for Fully Mechanized Mining Face ................................................................................................................. 21 2.2 Simulation Test Bench Mechanical System Design .............................................. 23 2.3 Design of Electronic Control System for Simulation Test Bench ......................... 24 2.4 Experimental of Simulation Test Bench ................................................... 27 2.5 PC Software Design ............................................................................................... 28 2.6 Summary ................................................................................................................ 32 3 Shearer Positioning Data PostProcessing Technology ........................................ 33 3.1 Smoothing Algorithm Overview ............................................................................ 33 3.2 Forward Kalman Filter Design .............................................................................. 33 3.3 Processing Process When Locating Data ............................................................... 39 3.4 Experimental Study on Post-Processing of Shearer Positioning Data ................... 43 3.5 Summary ................................................................................................................ 45 4 Research on Face Alignment of Scraper Based on Post-Processing of Shearer Positioning Data ......................................................................................................... 46 4.1 Face Alignment Principle Based on Post-Processing of Shearer Track ................. 46 4.2 Simulation Research on Face Alignment Algorithm ............................................. 48 万方数据 VII 4.3 Face Alignment Experiment .................................................................................. 54 4.4 Research on Factors Affecting Straightness of Scraper ......................................... 57 4.5 Summary ................................................................................................................ 63 5 Conclusions and Forecast ....................................................................................... 64 5.1 Conclusions ............................................................................................................ 64 5.2 Future Work ........................................................................................................... 65 References ................................................................................................................... 66 Authot’s Resume ........................................................................................................ 74 Declaration of Thesis Originality.............................................................................. 75 Thesis Data Colletcion ............................................................................................... 76 万方数据 VIII 图清单图清单 第一章 图序号 图名称 页码 图 1.1 综采工作面示意图 2 Figure 1.1 The schematic diagram of mechanized mining face 2 图 1.2 LASC 系统框架 3 Figure 1.2 LASC system framework 3 图 1.3 基于 INS 的采煤机定位装置 4 Figure 1.3 Shearer positioning device based on INS 4 图 1.4 采煤机三维路径测量结果显示 4 Figure 1.4 The results of the three-dimensional path measurement of the shearer 4 图 1.5 调直系统框图 5 Figure 1.5 Face alignment system block diagram 5 图 1.6 截割模型 5 Figure 1.6 Cutting model 5 图 1.7 煤层模型产生的底板轮廓(左)与截割模型产生的底板轮廓(右) 6 Figure 1.7 Comparison of seam floor profiles generated by exploration prediction left and LASC cut model right generated as-mined floor profile. 6 图 1.8 可见光检测(白色直线为计算值) 6 Figure 1.8 Visible light detection white line is the calculated value 6 图 1.9 工作面虚拟现实