坚硬顶板跨上山开采技术研究.pdf
分 类 号 TD823 密 级 公 开 单位代码 10878 学 号 20123301067 硕 士 学 位 论 文硕 士 学 位 论 文 论文题目论文题目 坚硬顶板跨上山开采技术研究坚硬顶板跨上山开采技术研究 学科门类学科门类 工学硕士工学硕士 学科专业学科专业 结构结构工程工程 研究方向研究方向 工程结构的现代施工技术工程结构的现代施工技术 作者姓名作者姓名 宋国辉宋国辉 导师姓名导师姓名 杨自友杨自友 完成时间完成时间 20152015 年年 3 3 月月 万方数据 坚硬顶板跨上山开采技术研究坚硬顶板跨上山开采技术研究 Research on Cross Uphill Mining Technology under Hard Roof 学科门类学科门类 工学硕士工学硕士 学科专业学科专业 结构工程结构工程 研究方向研究方向 工程结构的现代施工技术工程结构的现代施工技术 作者姓名作者姓名 宋国辉宋国辉 导师姓名导师姓名 杨自友杨自友 完成时间完成时间 20152015 年年 3 3 月月 万方数据 万方数据 万方数据 安徽建筑大学硕士学位论文 - I - 摘 要 随着我国用煤量的逐年上升,开采量逐年的加大,开采难度的提高,开采过程中 事故是常有发生。坚硬顶板的岩层组成成分又是千差万别,再加上顶板冒落没有明显 的预兆和产生巨大的冲击荷载的特征,使得坚硬顶板的控制工作也是难上加难。由于 顶板控制难度之大,再加上瓦斯、透水、火灾等一些重要因素的影响,这样就使得我 国煤炭的采储量受到一定程度的制约。因此,煤矿开采之前要弄清楚具体的开采地质 情况以及利用的科学技术手段是至关重要的。随着跨上山开采技术的应用,使得大量 煤柱的开采不再被浪费。那么,为我国能源的使用延续了时间。 本文是以临汾天煜恒昇煤业 9202 综放面跨上山开采为工程研究背景,通过现场 实测数据的收集和整理、实验室对岩样的分析、对建立的力学模型计算以及 FLAC3D 的数值模拟等一些研究手段, 对在坚硬顶板条件下的跨上山开采技术进行了深入的研 究,得出工作面在安全开采的前提下,实现了工作面的跨上山开采技术,提高了该矿 的经济和社会效益。 首先,详细阐述了临汾天煜恒昇煤业 9202 综放面跨上山开采工程概况,三条上 山的支护与布置方式及跨上山两种方案的提出。通过实验室的单轴、三轴压缩实验, 绘制了应力应变曲线,并将所得的实验结果与工作面岩样物理力学性质中的容重、抗 压抗拉强度等参数值进行了比较, 数据基本一致, 可为数值计算及理论分析提供依据。 其次,运用 FLAC3D软件,对 9202 工作面所在顶底板共 7 个岩层分别进行了模 拟。由应力图看出,机巷附近的压应力要比风巷小,风巷周边局部围岩的拉应力比机 巷周边围岩应力大。通过三条上山以后,风巷的压应力达到了 52MPa;工作面顶底 板的拉应力也同时达到了最大值约 1.05MPa。 依次跨过三条上山时,由塑性图知,塑性区域的分布越来越广,并逐渐向顶底板 扩展。采场前后方断面主要承受的是剪切力,容易引起剪切破坏。 随着工作面的推进,顶板悬空面积在增大,产生垂直位移的区域也在增大, 随着 跨上山开采,最大位移区域是处在工作面顶板的中央。位移值是不断增大的,最大位 移约为 581.49mm。 最后,对来压步距的力学模型进行理论分析计算,得出初次来压的步距范围是 22.00~49.97m,这与现场实测 30m 初次来压步距比较接近。周期来压步距范围为 7.21~14.49m,与现场实际的 12~18m 的范围差距不大,而且计算值 14.49m 与现场 所测值很接近。还对支架工作阻力两个模型进行了计算,当考虑老顶对直接顶支撑力 的作用时, 不管只是考虑顶煤或者只是考虑直接顶板或者考虑顶煤和直接顶板全部高 度都存在碎矸石的支撑力,支架都能满足要求。当不考虑老顶对直接顶支撑力时,只 万方数据 安徽建筑大学硕士学位论文 - II - 有当顶煤和直接顶板全部高度部分都存在碎矸石提供支撑力的时候, 支架才能刚好满 足有效支撑的要求。 图 [45] 表 [9] 参 [64] 关键词关键词坚硬顶板;跨上山;来压步距;支架工作阻力 分类号分类号TD823 万方数据 安徽建筑大学硕士学位论文 - III - Abstract With the amount of coal used and production increased year by year in our country, mining accidents often occurs as the improvement of production difficulty. Hard roof control is difficult because of components of hard roof strata is different and there is no obvious signs of roof caving and a huge impact load characteristics. Our country’s coal reserves is restircted due to the difficulty of hard roof control and the effects of gas, permeable, fires and other important factors. Therefore, it is very crucial to figure out the specific mining geological conditions and the use of science and technology before coal mining. A large number of coal pillar will not be wasted as a result of the application of mining technology of cross uphill. Then, the continuation of the time for the use of energy in our country. The article is based on the Linfen Tianyu Hengsheng Coal 9202 fully mechanized top coal caving face cross uphill mining as the research background. Research s including the measured data collection and collation, laboratory analysis of rock samples, mechanical model calculation and numerical simulation of FLAC3D and so on. Cross uphill mining technology under hard roof has conducted in-depth research. Achieving the cross uphill mining technology under the premise of safety mining. There is improving economic and social benefits of the mine. First, describing the Linfen Tianyu Hengsheng Coal 9202 fully mechanized top coal caving face cross uphill mining project in detail. Support and arrangement and two schemes of cross uphill are proposed. The stress-strain curve was drawn through laboratory uniaxial and triaxial compression experiments. And the experimental results compared with unit weight, compressive and tensile strength of the physical and mechanical properties of the working face of rock samples. The data is consistent and can provide the basis for numerical calculation and theoretical analysis. Secondly, 9202 working face of roof and floor in which a total of seven rocks were carried out to simulate by using the FLAC3D software. The compressive stress is near the Machine road is smaller than the Wind by the stress diagram. The tensile stress of the Wind road surrounding rock is larger than the Machine. After crossing uphill, the compressive stress of the Wind road is 52MPa and the tensile stress of roof and floor also reached 1.05MPa. After crossing uphill in turn, the distribution of plastic zone is more and more widely 万方数据 安徽建筑大学硕士学位论文 - IV - and extend to roof and floor gradually by the plastic figure. Front and rear sections of stope beared the shear stress and caused shear failure. The vacant area of roof and areas of vertical displacement are increasing because of the advance of working face. The areas of maximum displacement is in the middle of the roof in the cross uphill mining. The displacement is increasing and the maximum displacement is 581.49mm. Finally, there is the analysis and calculation theory of the mechanical model of weighting distance. First weighting step is 22.00~49.97m. It is very closer with the 30m of field measurements. The periodic weighting step is 7.21~14.49m. It is closer with the 12~18m of the actual measured. The calculated value of 14.49m and the measured value are very close. It is calculating two models of working resistance of bracket. The bracket can do it when considering the old roof support the immediate roof and not caving or direct roof or the full height of caving and direct roof have the supporting force of crushed gangue. The bracket to exactly meet the requirements of effective support when only considering the full height of caving and direct roof have the supporting force of crushed gangue and not the old roof support the immediate roof. Figure [45] table [9] reference [64] KeyWordshard roof, cross uphill, roof weighting step, support working resistance Chinese books catalog TD823 万方数据 安徽建筑大学硕士学位论文 - V - 目 录 摘 要...................................................................................................................I Abstract....................................................................................................................III 插图清单..............................................................................................................VIII 附表清单..................................................................................................................X 第一章 绪论 .............................................................................................................1 1.1 论文的研究目的、意义及背景...................................................................1 1.1.1 研究的目的及意义.............................................................................1 1.1.2 论文的背景 ........................................................................................2 1.2 国内外研究现状及现存的问题...................................................................3 1.2.1 国内外研究现状.................................................................................3 1.2.2 现存的问题 ........................................................................................6 1.3 本文研究的主要内容和方法.......................................................................6 第二章 煤层开采地质和技术条件...........................................................................8 2.1 煤层地质条件..............................................................................................8 2.1.1 工作面概况 ........................................................................................8 2.1.2 煤层概况............................................................................................9 2.1.3 地质构造..........................................................................................11 2.1.4 水文地质..........................................................................................11 2.1.5 瓦斯、煤尘和煤的自燃对煤层开采的影响 ....................................13 2.2 三条上山支护............................................................................................14 2.3 跨过三条上山实施方案的比较与选择......................................................15 2.3.1 三条上山的布置方式.......................................................................15 2.3.2 实施跨三条上山方案的提出 ...........................................................16 2.4 本章小结.....................................................................................................18 第三章 岩样岩石力学实验 ....................................................................................19 3.1 9202 工作面顶板力学性质.........................................................................19 3.2 实验............................................................................................................19 3.3 本章小结....................................................................................................24 第四章 数值模拟....................................................................................................25 4.1 数值模拟软件的选择和介绍.....................................................................25 4.2 模型的建立................................................................................................26 4.3 模拟结果分析............................................................................................28 4.3.1 应力分析..........................................................................................28 4.3.2 塑性分析..........................................................................................33 4.3.3 垂直位移分析...................................................................................36 万方数据 安徽建筑大学硕士学位论文 - VI - 4.3.4 应力与位移的关系...........................................................................41 4.3.5 塑性区与位移的关系.......................................................................41 4.4 本章小结....................................................................................................42 第五章 顶板来压步距的力学分析.........................................................................43 5.1 顶板来压步距概述 ....................................................................................43 5.2 直接顶板初次来压步距的力学分析..........................................................43 5.3 直接顶板周期来压步距的力学分析..........................................................48 5.4 本章小结....................................................................................................53 第六章 支架的合理工作阻力与适应性分析 .........................................................54 6.1 支架选用概述.............................................................................................54 6.1.1 矿山压力控制概况............................................................................54 6.1.2 支架概况...........................................................................................55 6.1.3 工作面支架合理工作阻力................................................................56 6.2 计算模型的建立.........................................................................................57 6.2.1 支架工作阻力计算模型一的建立原则.............................................57 6.2.2 支架工作阻力计算模型二的建立原则.............................................59 6.3 本章小结....................................................................................................61 第七章 结论与展望................................................................................................62 7.1 结论............................................................................................................62 7.2 展望............................................................................................................63 参考文献.................................................................................................................65 致谢.........................................................................................................................68 作者简介及读研期间主要科研成果.......................................................................69 万方数据 安徽建筑大学硕士学位论文 - VII - Contents Abstract ..I Chapter 1 introduction .......1 Chapter 2 coal mining geological and technical conditions...8 Chapter 3 experimental samples of rock mechanics.....19 Chapter 4 numerical simulation.....25 Chapter 5 mechanics analysis of roof weighting step ...........43 Chapter 6 reasonable working resistance and adaptability analysis of bracket.....54 Chapter 7 conclusions and prospects ....62 reference ....65 postscript or compliment ...68 resume of author ....69 万方数据 安徽建筑大学硕士学位论文 - VIII - 插图清单 图 2-1 煤层顶底板综合柱状图 .............................................................................10 图 2-2 9202 工作面布置平面图 ............................................................................16 图 3-1 1岩样单轴压缩应力-应变曲线.................................................................20 图 3-2 1岩样三轴压缩(围压10MPa)应力-应变曲线 ....................................20 图 3-3 1岩样单轴和三轴压缩应力-应变曲线比较..............................................20 图 3-4 1岩样单轴和三轴抗压强度摩尔圆计算图...............................................21 图 3-5 2岩样单轴压缩应力-应变曲线.................................................................21 图 3-6 2岩样三轴压缩(围压10MPa)应力-应变曲线 ....................................21 图 3-7 2岩样单轴和三轴压缩应力-应变曲线比较..............................................22 图 3-8 2岩样单轴和三轴抗压强度摩尔圆计算图...............................................22 图 4-1 模型切片透视图.........................................................................................28 图 4-2 距离西翼轨道上山 22m 倾向垂直应力分布 .............................................28 图 4-3 通过西翼轨道上山倾向垂直应力分布......................................................29 图 4-4 跨过西翼轨道上山倾向垂直应力分布......................................................29 图 4-5 通过西翼回风上山倾向垂直应力分布......................................................29 图 4-6 跨过西翼回风上山倾向垂直应力分布......................................................30 图 4-7 通过西翼运输上山倾向垂直应力分布......................................................30 图 4-8 跨过西翼运输上山倾向垂直应力分布......................................................30 图 4-9 距离西翼轨道上山 22m 走向垂直应力分布 .............................................32 图 4-10 跨过西翼轨道上山走向垂直应力分布 ....................................................32 图 4-11 跨过西翼回风上山走向垂直应力分布 ....................................................32 图 4-12 跨过西翼运输上山走向垂直应力分布 ....................................................33 图 4-13 距离西翼轨道上山 22m 倾向塑性区分布 ...............................................33 图 4-14 跨过西翼轨道上山倾向塑性区分布........................................................34 图 4-15 跨过西翼回风上山倾向塑性区分布........................................................34 图 4-16 跨过西