急倾斜煤层综采走向分段充填及其岩层控制研究.pdf
博士博士学位论文学位论文 急倾斜煤层综采走向分段充填急倾斜煤层综采走向分段充填 及其岩层控制研究及其岩层控制研究 研研 究究 生生姚姚 琦琦 导导 师师冯涛冯涛 教授教授 学学 科科矿业工程矿业工程 研究方向研究方向岩石力学与岩层控制岩石力学与岩层控制 20172017 年年 1111 月月 密密 级级公开 中图分类号中图分类号TD 823 万方数据 Project 51274095 Supported by National Natural Science Foundation of China A Dissertation ted for the Doctor Degree Study on ground control and fully-mechanized sublevel filling along the strike in steeply inclined coal seam Candidate YAO Qi Supervisor and Rank Prof. FENG Tao 万方数据 国家自然科学基金资助项目51274095 急倾斜煤层综采走向分段充填急倾斜煤层综采走向分段充填 及其岩层控制研究及其岩层控制研究 学位类型学位类型 学术型学位 作者姓名作者姓名 姚 琦 作者学号作者学号 140101030001 学 科 ( 专 业 学 位 类 别 )学 科 ( 专 业 学 位 类 别 ) 矿业工程 研 究 方 向 ( 专 业 领 域 )研 究 方 向 ( 专 业 领 域 ) 岩石力学与岩层控制 导 师 姓 名 及 职 称导 师 姓 名 及 职 称 冯 涛 教 授 实 践 导 师 姓 名 及 职 称实 践 导 师 姓 名 及 职 称 所在所在学院学院 资源环境与安全工程学院 论文提交日期论文提交日期 2017 年 11月 20日 万方数据 学位论文原创性声明学位论文原创性声明 本人郑重声明所呈交的论文是本人在导师的指导下独立进行研究所取得的研究 成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经 发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明 确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名 日期 年 月 日 学位论文版权使用授权书学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并 向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授 权湖南科技大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以 采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名 日期 年 月 日 导师签名 日期 年 月 日 万方数据 湖南科技大学博士学位论文 - 1 - 摘摘 要要 煤矿充填或部分充填是减小煤矿开采损害最有效的技术手段,针对急倾斜煤层全 部充填法充填成本高、工效低等问题,提出急倾斜煤层走向分段充填开采方法,以期 减少充填量的同时能够确保顶板稳定,有效控制地表下沉。根据急倾斜煤层综采走向 分段充填的布置特征,利用理论分析、力学试验及相似模拟实验、计算机数值模拟分 析和典型的急倾斜煤层走向分段充填开采方案设计及现场实践,得到了如下主要研究 成果 (1)提出了急倾斜煤层走向分段充填采煤方法,为在急倾斜煤层开采时有效控制 岩层移动提供了一种安全、高效的新途径。同时,根据急倾斜煤层工作面回采巷道布 置特点,提出了两种沿空留巷方法。 (2)自行研制了卧式多角度矿山开采平面相似模拟实验平台,解决了急倾斜煤层 开采相似模拟实验过程中填充模型难度大、不安全等问题,研制的实验平台适合进行 任何倾角煤层开采的平面应力或平面应变模型的模拟实验。 (3)以“砂石石膏水泥”三种原料进行了相似材料配比实验试件的平均抗压 强度随着砂石质量比增大而减小,加入适量的水泥会增大试件抗压强度。以这三种原 料配制的试件的抗压强度可控制在 0.110MPa 之间,适用于相似比为 1201200 的相 似实验岩层相似材料配制。 (4)对急倾斜煤层分段充填开采的顶板变形破坏机理及岩层移动规律进行了研究, 理论推导了急倾斜倾向顶板岩梁的挠曲方程,分析揭示了无论是在充填区域还是未充 填区域,最大挠度均出现在工作面的中上部位置,未充填区域,顶板最大挠度位于工 作面的 0.62L,而在充填区域顶板最大挠度位于 0.89L 处。基本顶在充填体柱支撑作用 下,充填区域倾斜顶板岩梁的最大挠度位置较未充填区域向工作面上部转移 1/3 左右。 (5)通过相似材料模型实验结果分析,工作面沿走向推进后,充填区域的倾斜岩 梁在胶结充填体的支撑作用下,顶板下沉较小,顶板岩层仅出现了弯曲下沉。而未充 填区域的顶板则变形较大,直接顶出现垮落现象,垮落矸石充填采空区下部,对下部 的顶底板起到支撑约束作用。 (6)对于分段充填的未充填区域来说,倾向岩梁上部为直接拉伸断裂,层间岩层 为梁式断裂,且断裂线位置位于工作面的中上部,下部为层间裂开形式,顶板呈现了 “F”型断裂形态,形成了由下部裂隙发育支撑区、顶板弯曲下沉自承区和上端部支撑 区三个部分构成的二次平衡的承载结构。 (7)充填柱体的支撑反力和顶板最大弯矩随着充填柱体的跨距增大而增大,而工 作面支架支撑力对顶板最大弯矩和充填柱体支撑反力影响较小。充填柱体的作用反力 (强度)越大,充填柱体中心的受力就越大,且能减小顶板的最大弯矩值。 万方数据 摘 要 - 2 - (8)充填柱体材料在单轴压缩条件下,试件出现了弹性变形阶段、裂隙出现阶段、 裂隙增加阶段、裂隙压密阶段和裂隙滑动阶段。试件经历前两个阶段后,出现第一次 峰值,随后经历裂隙增加阶段、裂隙压密阶段达到第二次峰值后,最终呈现“X”形态 的剪切破坏。充填柱体中部未破坏区域随着胶结材料比重增加而增大。 (9)推导了急倾斜工作面底板的挠度方程,利用方程分析了底板的最大挠度位于 中部偏上部(0.62L)处有最大值;通过数值模拟得到了底板的最大的主应力卸压区出 现在工作面的中上部,主应力的卸压区大小随着工作面的推进而变大;底板的最大的 σyz剪切力出现在工作面的中上部;从水平位移变化和垂直位移变化看出,急倾斜的底 板最有可能从工作面的中部开始产生滑移破坏,而后上部随之滑移。 (10)针对了湘永煤矿 2463工作面基本条件进行了分段充填方案设计,确定了 24 采区上覆岩层主关键岩层为厚度 105.6m 硅质灰岩层,亚关键岩层为开采煤层向上第三 层的 55.6m 厚中砂岩层;走向分段充填的长充填柱体尺寸为 40.0m,中心距为 114.0m, 短充填柱体宽度为 12.0m,中心跨距为 26.0m,可控制上覆亚关键岩层的变形破断,从 而有效控制关键岩层移动变形及地表下沉量;对关键岩层底部的离层区进行注浆充填, 在注浆区下部岩层形成载荷承载区,对主关键岩起支撑作用,有效控制地表沉降。 万方数据 湖南科技大学博士学位论文 - 1 - Abstract The coal mine filling or partial filling is the most effective technical means to reduce the coal mining damage, aiming at the problems of high cost and low efficiency of filling in the steep seam, the paper puts forward sublevel filling mining for steeply inclined coal seam, reduces mine filling quantity and ensures roof stability and controls surface subsidence effectively. According to the layout characteristics of the sublevel filling face in the steeply inclined seam, it was studied through the mechanical theory analysis, the laboratory mechanics test and the similar material simulation experiment, the computer numerical simulation analysis and it is designed that the typical steeply inclined coal seam to the sublevel filling mining scheme and it was application. the research results are as follows 1 This paper puts forward the of coal mining without coal pillar in steeply inclined seam and the of strata movement control, according to the layout point of the face, puts forward the technology of GOB roadway along goaf in steeply inclined seam of the prefabricated curved bracket, which provides the guarantee for coal pillar mining. At the same time, the key technology is decomposed and discussed, which lays a foundation for the further research. 2 Development of horizontal multi-angle mining plane similarity simulation experimental plat, it solves the problem that the landfill model is difficult and unsafe in the similar simulating experiment of steeply inclined coal seam, and the developed plat is suitable for any inclined seam, which not only can do simulate plane stress, but also can conduct similar simulation of plane strain model. 3 With “gravel gypsum cement“ three kinds of raw materials for the similar ratio experiment The average compressive strength of specimens decreases with the increase of gravel ratio, and adding the right amount of cement will increase the compressive strength of specimens. The compressive strength of three kinds of specimens can be used to produce similar materials for similar models with a similar ratio of 120 1200 to 0.110MPa. 4 The general mechanism of roof deation and failure and the movement law of strata in steeply inclined seam are studied, and the flexural equation of rock beam with steeply inclined inclination is deduced. In this paper, the relative parameters of Xiang-yong coal mine are introduced into the equation, and the maximum deflection is found in the upper and middle part of the working face, and the roof deflection of the filling area is 0.62L, the filling area is 0.89L. The maximum deflection position of the inclined rock beam moves up to about one-third from the filling area under the support of the filling column. 5 Through the similar material model experiment result analysis, the face along the direction advancement, the filling area inclined rock beam under the cementation Filling Body column support function, the roof subsidence is small, the roof only appears the curved subsidence area. But the roof of the filling area is larger, the collapse phenomenon of the 万方数据 Abstract - 2 - direct roof appears, and the lower part of the GOB is filled with the bottom, which plays a supporting and restraining role to the lower roof. 6 For the filling area, the inclined rock beam has a direct tensile fracture, and the interlayer rock is a beam type fracture. And the fracture line position is located in the upper and middle part of the face, the lower layer is split , the roof s the “F“ zigzag fracture , ing a two-time balanced bearing structure consisting of three parts, which are supported by the lower fissure development, the roof bending and sinking self bearing area and the upper end support 7 The bracing force of the filling cylinder and the maximum bending moment of the roof increase with the increase of the span of the filling cylinder, and the support of the support of the working face has little effect on the maximum bending moment of the roof and the support back force of the filling cylinder. The larger the Action Force strength of the filling cylinder, the greater the Force in the center of the filling column, and the lower the maximum bending moment of the roof. 8 Under the condition of uniaxial compression, the elastic deation stage, the crack occurrence stage, the crack increase stage, the crack compaction stage and the fissure sliding stage are appeared in the specimen. After the first two stages, the initial peak is experienced, then the shear damage of the “X“ is finally presented after the second peak of the crack increasing stage and the crack compaction stage. In the middle of the filling column, the area with no damage increases with the proportion of cemented material. 9 The deflection equation of the bottom plate of steeply inclined face is deduced by mechanics, The maximum deflection of the bottom plate 0.62L is analyzed by using the equation, and the maximal main stress relief zone of the bottom plate is obtained by numerical simulation, which appears in the upper and middle part of the working face. The main stress increases of the unloading area with the advancing of the working face, and the maximum shearing force of the bottom plate appears in the upper and middle part of the face; from the change of horizontal displacement and vertical displacement, it is seen that steep The bottom of the floor is most likely to start from the middle of the face of the slip damage, then the upper part of the slip, to the lower part of the face development. 10 The main key strata of overlying strata in 24 mining area are siliceous limestone which thickness number is 105.6m, and the key rock strata are the third layer of coal seam for mining. 50.6m thick medium sand strata; determined the length filling column size is 40.0m, the center distance is 114.0m, the short filling column width is 12.0m, The center span is 26.0m, which can control the deation and breakage of the key strata in the overlying sub in order to effectively control the main key strata movement deation and surface subsidence; grouting filling is carried out in the separation zone at the bottom of the main key strata, and the load bearing area is ed in the lower strata of the grouting area, which plays a supporting role to the main key rock, and effectively controls the ground subsidence. 万方数据 湖南科技大学博士学位论文 - 3 - Key Word Steep coal seam; Fully-mechanized mining; Sublevel filling along the strike; Strata movement; Ground control in mining 万方数据 湖南科技大学博士学位论文 i 目目 录录 摘 要 ........................................................................................................................................ 1 Abstract ..................................................................................................................................... 1 第 1 章 绪论 ............................................................................................................................. 1 1.1 研究意义 ...................................................................................................................... 1 1.2 研究现状 ...................................................................................................................... 1 1.2.1 急倾斜煤层综采现状 ............................................................................................. 1 1.2.2 急倾斜煤层充填及部分充填现状 ......................................................................... 4 1.2.3 岩层移动控制理论现状 ......................................................................................... 8 1.3 研究内容、方法及路线 ............................................................................................ 10 1.3.1 研究内容 ............................................................................................................... 10 1.3.2 研究方法 ............................................................................................................... 11 1.3.3 研究目标 ............................................................................................................... 11 1.3.4 研究路线 ............................................................................................................... 11 第 2 章 急倾斜走向分段充填开采及岩层控制方法的提出 ............................................... 15 2.1 急倾斜煤层开采特点 ................................................................................................ 15 2.1.1 地质特点 ............................................................................................................... 15 2.1.2 急倾斜煤层开采及岩层移动特点 ....................................................................... 16 2.1.3 急倾斜煤层充填特点 ........................................................................................... 16 2.2 走向无煤柱分段充填采煤方法的提出 .................................................................... 17 2.2.1 工作面的布置 ....................................................................................................... 17 2.2.2 分段充填采煤方法主要实施步骤 ....................................................................... 18 2.2.3 分段充填实现的目标 ........................................................................................... 19 2.2.4 急倾斜煤层开采的沿空留巷方法的提出 ........................................................... 19 2.3 走向分段充填岩层控制模式及关键技术 ................................................................ 24 2.3.1 理论依据 ............................................................................................................... 24 2.3.2 岩层控制模式的提出 ........................................................................................... 24 2.4 小结 ............................................................................................................................. 28 第 3 章 相似模拟平台研制及相似材料配比实验研究 ....................................................... 29 3.1 相似模拟实验原理 .................................................................................................... 29 3.1.1 相似三定理 ........................................................................................................... 29 3.1.2 相似条件 ............................................................................................................... 30 万方数据 目录 ii 3.2 模拟平台研制 ............................................................................................................ 31 3.2.1 现有平台概述 ....................................................................................................... 31 3.2.2 卧式多角度平面相似模拟实验装置 ................................................................... 31 3.3 相似材料制作与力学测试 ........................................................................................ 36 3.4 实验结果分析 ............................................................................................................ 38 3.4.1 骨胶配比影响 ....................................................................................................... 38 3.4.2 骨料粒径影响 ....................................................................................................... 39 3.4.3 材料压实度影响 ................................................................................................... 42 3.5 相似模拟实验误差来源分析 .................................................................................... 44 3.6 小结 ............................................................................................................................ 45 第 4 章 急倾斜走向分段充填倾向岩梁变形破坏机理研究 ............................................... 47 4.1 分段充填开采布置 .................................................................................................... 47 4.2 倾斜岩梁力学模型 .................................................................................................... 49 4.3 相似材料模拟实验