夯实作用下散体充填物料力学响应研究.pdf
江苏特聘教授项目(苏教师(2015)29 号) 江苏省第四期“333 工程”培养资金资助项目(BRA2015311) 中国矿业大学重大项目培育工程专项(2014ZDPY02) 硕士学位论文 夯实作用下散体充填物料力学响应研究 Mechanical Response Analysis on Granular Backfill Material under Tamping Device 作 者韩晓乐 导 师张吉雄 教授 中国矿业大学 〇二一七年五月 中图分类号 TD823 学校代码 10290 UDC 622 密 级 公开 江苏特聘教授项目(苏教师(2015)29 号) 江苏省第四期“333 工程”培养资金资助项目(BRA2015311) 中国矿业大学重大项目培育工程专项(2014ZDPY02) 中国矿业大学 硕士学位论文 夯实作用下散体充填物料力学响应研究 Mechanical Response Analysis on Granular Backfill Material under Tamping Device 作 者 韩晓乐 导 师 张吉雄 申请学位 工学硕士 培养单位 矿业工程学院 学科专业 采矿工程 研究方向 绿色开采 答辩委员会主席 谢文兵 评 阅 人 马立强、张寅 二〇一七年五月 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 致谢致谢 本论文是在导师 张吉雄 教授的悉心指导下完成的。 我记得去年毕业的一位师兄告诉我 “致谢这部分是你完成全部的论文写作 工作之后,在夜深人静的时候,细细梳理内心那万千思绪时写下来的文字” 。是 的,当我在电脑前沉思,能听到的只有我那颗年轻不安于现状的心和电脑散热器 的嗡嗡声。师从三载,感触颇深。张老师“快乐采矿,阳光生活”的口号给学生 留下了深刻的印象,他身体力行向我们展示了作为一个采矿人对待学术要兢兢 业业, 对待工作要认真负责, 对待家人要学会担当 张老师不仅是我的专业老师, 更是我的人生导师。在此,谨向我尊敬的导师致以最深深的谢意感谢您这三年 来的鼓励、宽容与指导,是您的鼓励我才会坚持到现在,是您的宽容我才敢走到 现在,是您的指导我才成为我现在 感谢周楠老师在论文写作、 修改期间给予的指导和以及硕士期间对我的帮助, 周楠老师学术一丝不苟,待人光明磊落,可谓良师益友之典范。感谢张强老师在 论文修改上的建议;感谢姜海强、齐文跃和闫浩博士在论文写作期间的建议;感 谢三年同窗兰立信和邰阳以及我们曾经一起入学的其他六名硕士在我硕士学习 与生活期间的陪伴。虽然去年有些人选择或升学或工作,但是有机会认识优秀的 你们,是我一生宝贵的财富,你们在数值模拟和理论计算方面提出的建议使我受 益匪浅。同时也要感谢固体充填采煤课题组的钟思见硕士、权凯硕士、徐向阳硕 士、王佳奇硕士、张升硕士、刘志成硕士和姜淑印硕士等在实验、图片修改和数 据收集方面给予的帮助。 感谢我的父母在二十年求学期间给予的最深沉最无私的关爱、培养、鼓励和 支持,你们是儿子的第一任老师,是你们教会了我“先成人,后成才”道理,是 你们的默默奉献一直支撑着我的求学之路,你们对我的恩情儿子无以为报 感谢学校和矿业工程学院的领导和老师三年来在我学习和生活上的指导和 帮助。 感谢本论文所引用文献的作者,是你们的研究成果让我开阔了眼界和思路。 感谢在帮忙之中评审、答辩本论文并提出宝贵意见的各位专家、教授。 感谢所有帮助和关心我的人 万方数据 I 摘摘 要要 随着固体充填采煤技术的发展以及在全国范围内的推广应用, 充填物料的种 类呈现多样化趋势,风积沙、黄土、矸石、粉煤灰和露天矿渣等散体物料陆续被 用作充填物料。通过对散体物料力学特性的研究,为今后进一步提高充填开采效 果奠定理论基础。本文从散体物料的基本特性着手,根据其不连续的特性引入离 散元法进行数值模拟来研究散体充填物料的力学响应。结合实验室实验、虚拟实 验参数标定最终确定了数值模拟中的参数,通过 EDEM 软件模拟了夯实作用下 散体物料的力学响应,取得了以下研究成果 (1)通过实验室试验测得散体充填物料的基本特性,再根据虚拟参数标定 实验得出数值模拟过程中散体充填物料的基本参数。 在钢桶压实虚拟标定试验中, 得出矸石颗粒的本征参数 泊松比为 0.19, 密度为 2670kg/m3, 弹性模量为 15GPa。 在自然安息角虚拟标定试验中,得出矸石颗粒模型的恢复系数为 0.15,静摩擦系 数为 0.44,动摩擦系数为 0.05。 (2)随着夯实机构的夯实角度不断增加,散体充填物料的欠接顶量呈现先 减小后增加的变化趋势。夯实角度在 22和 27时散体物料的平均密实度较为 接近且均大于夯实角度为 32时的密实度。因此在夯实过程中既要保证夯实机 构的夯实板完全进入料堆,又要保证夯实角度不宜过大,以保证夯实效果提高夯 实效率。 (3)随着散体物料的粒径不断增大,散体物料的欠接顶量随之增大,散体 物料的平均密实度不断减小。且当散体物料粒径分布为小粒径和中粒径时,平均 密实度差距不大。因此在制备散体充填物料时,考虑到破碎成本,建议将其破碎 至中粒径即可,从而既可以提高破碎速度又可以保证密实度。 (4)随着夯实机构速度的不断增加,散体物料的欠接顶量呈现线性增加的 趋势。夯实机构速度对夯实机构后方散体物料的平均密实度影响很小,因此可适 当减小夯实机构夯实速度,从而降低泵站压力减小设备投入。 该论文有图 59 幅,表 12 个,参考文献 111 篇。 关键词关键词散体物料;离散元法;参数标定;夯实作用;力学响应 II Abstract With the development of solid backfilling mining technology and application in the country, backfilling materials showed a trend of diversification, for example the aerolian sand, loess, gangue, fly ash and slag have been used as backfilling materials. Although they come from different places and their characteristics are unique, they all belong to granular materials. Based on the study of the mechanical properties of granular materials, the theoretical basis for improving backfilling mining effect has been established. This thesis focuses on the basic characteristics of granular materials and introduces the Discrete Element DEM to study the mechanical response of granular materials by numerical simulation. The EDEM software is chosen to carry out the tamping process in the gob to study the mechanical response of the granular backfilling material. The numerical simulation parameters are carlibrated from laboratory testing to reducing the errors. The results are as follows 1 The restitutuion coefficient, dynamic friction coefficient and static friction coefficient have vital influences on the mechanical response of granular materials. However, due to the complex shapes of the granular material, there is only a low chance to obtain the parameters through laboratory experiments. Thus, it is necessary to carry out the numerical simulation parameter calibration. In the virtual test of gangue cylinder compaction test, the intrinsic parameters of gangue particles are obtained The Poissons ratio is 0.19, the density is 2670kg/m3, and elastic modulus of 15GPa. In the virtual test of repose angle, it is concluded that the coefficient of restitution is 0.15, the static friction coefficient is 0.44, and the dynamic friction coefficient is 0.05. 2 As the angle of the tamping device increases continuously, the gap between the roof and the backfilling material will decreas first and then increase. When the tamping angle is 22and 27, the average dense degrees of backfilling materials are close and they are both larger than the dense degree of 32. Therefore, during the process of tamping, the tamping head should bury into the backfilling pile so that the tamping head can work at the best condition. In the meantime, the tamping angle should not be too large, which will improve the tamping efficiency and effect. 3 As the particle sizes of the granular materials increase, the gap between the roof and the backfilling material will also increase, while the average dense degree will decrease. Besides, when the particle size distributions are small and medium, the average dense degrees are very close. So when preparing the backfilling materials in III the coal mine, it is suggestesd to crack the gangue particles into medium size to increase the crack efficiency ad lower the cost. 4 With the increase of the tamping speed, the gap between the roof and the backfilling material shows a trend of linear increasing. While the dense degree behind the tamping device decreases slightly, which means that the tamping speed has a little influence o the dense degrees. Therefore, the tamping speed can be lowered to certain values to reduce the hydraulic pressure. There are 59 figures, 12 tables and 111 references in this thesis. Keywords granular material; discrete element ; parameter calibration; tamping effect; mechanical response IV 目目 录录 摘摘 要要............................................................................................................................ I 目目 录录......................................................................................................................... IV 图清单图清单...................................................................................................................... VIII 表清单表清单......................................................................................................................... XI 变量注释表变量注释表 ............................................................................................................... XII 1 绪论绪论............................................................................................................................ 1 1.1 研究背景与意义 ..................................................................................................... 1 1.2 国内外研究现状 ..................................................................................................... 2 1.3 主要研究内容与方法 ........................................................................................... 11 1.4 主要研究成果 ....................................................................................................... 12 2 散体充填物料基本特性散体充填物料基本特性 ......................................................................................... 13 2.1 散体物料特性 ....................................................................................................... 13 2.2 离散元法的基本原理和力学模型 ....................................................................... 17 2.3 本章小结 ............................................................................................................... 24 3 基于实验室试验的散体充填物料参数校准基于实验室试验的散体充填物料参数校准 ......................................................... 25 3.1 常用的离散元参数标定的方法 ........................................................................... 25 3.2 数值分析模型 ....................................................................................................... 26 3.3 基于钢桶压实试验的模拟参数校准 ................................................................... 29 3.4 基于自然安息角测试的模拟参数校准 ............................................................... 37 3.5 本章小结 ............................................................................................................... 44 4 散体充填物料在夯实作用下的响应模拟散体充填物料在夯实作用下的响应模拟 ............................................................. 45 4.1 数值分析模型及方案 ........................................................................................... 45 4.2 夯实机构角度对散体充填物料的影响 ............................................................... 48 4.3 粒径分布对散体充填物料的影响 ....................................................................... 51 4.4 夯实机构速度对散体充填物料的影响 ............................................................... 54 4.5 本章小结 ............................................................................................................... 57 5 工程实践工程实践 ................................................................................................................. 59 5.1 试验矿井采矿地质条件 ....................................................................................... 59 5.2 充填采煤液压支架 ............................................................................................... 60 V 5.3 夯实工艺优化及效果分析 ................................................................................... 62 5.4 本章小结 ............................................................................................................... 64 6 主要结论主要结论 ................................................................................................................. 65 参考文献参考文献 ..................................................................................................................... 67 作者简历作者简历 ..................................................................................................................... 73 学位论文原创性声明学位论文原创性声明 ................................................................................................. 75 学位论文数据集学位论文数据集 ......................................................................................................... 76 VI Contents Abstract ......................................................................................................................... I Contents ..................................................................................................................... IV List of Figures ......................................................................................................... VIII List of Tables ............................................................................................................. XI List of Variables ....................................................................................................... XII 1 Introduction ............................................................................................................... 1 1.1 Research Background and Significance ................................................................... 1 1.2 Overseas and Domestic Research Status ................................................................. 2 1.3 Research Contents and s ............................................................................ 11 1.4 Main Achievements ............................................................................................... 12 2 Basic Characteristics of Granular Backfill Material ........................................... 13 2.1 Characteristics of Granular Material ...................................................................... 13 2.2 The Basic Principle and Mechanical Model of Discrete Element ............ 17 2.3 Chapter Summary .................................................................................................. 24 3 Granular Materials Parameters Calicration Based on Experimental Tests ..... 25 3.1 General DEM Parameters Calibration s .................................................... 25 3.2 Model and Scheme of Numerical Simulation ........................................................ 26 3.3 Simulation Parameter Calibrations Based on Compressing Test .......................... 29 3.4 Simulation Parameter Calibrations Based on Angle of Repose Test ..................... 37 3.5 Chapter Summary .................................................................................................. 44 4 Response Analysis of Granular Materials under Tamping Device .................... 45 4.1 Model and Scheme of Numerical Simulation ........................................................ 45 4.2 The Influence of Tamping Angles on Granular Backfill Material ........................ 48 4.3 The Influence of Particle Size Distributions on Granular Backfill Material ......... 51 4.4 The Influence of Tamping Speeds on Granular Backfill Material ........................ 54 4.5 Chapter Summary .................................................................................................. 57 5 Engineering Practice ............................................................................................... 59 5.1 Geological Conditions in the Experimental Mines ................................................ 59 5.2 Backfill Mining Hydraulic Supports ...................................................................... 60 5.3 Tamping Optimization and Results Analysis ........................................... 62 5.4 Chapter Summary .................................................................................................. 64 6 Main Conslusions .................................................................................................... 65 VII Reference .................................................................................................................... 67 Author’s Resume ........................................................................................................ 73 Declaration of Thesis Originality ............................................................................. 75 Thesis Data Collection ............................................................................................... 76 VIII 图清单图清单 图序号 图名称 页码 图 1-1 常用充填物料的来源 6 Figure 1-1 The common resource of backfill materials 6 图 1-2 技术路线图 12 Figure 1-2 The technology roadmap 12 图 2-1 颗粒形状分类图 13 Figure 2-1 The classification graph of particle shapes 13 图 2-2 硅的粉末颗粒分布图 14 Figure 2-2 The silicon powder size distribution graph 14 图 2-3 自然安息角实验示意图 16 Figure2-3 The diagram of angle of repose testing 16 图 2-4 等径球体的理想排列方式 17 Figure 2-4 Ideal arrangement of equal diameter spheres 17 图 2-5 计算循环示意图