复杂地质条件下煤矿水害形成机理与防控技术研究(1).pdf
万方数据 Research on ation mechanism and prevention and control technology of coal mine water damage under complex geological conditions Dissertation ted to Xian University of Science and Technology In partial fulfillment of the requirement For the degree of Doctor of Engineering By Liu Xiaoming College of Energy Engineering Dissertation Directed byPro. Lai Xingping July, 2020 万方数据 万方数据 万方数据 万方数据 论文题目 复杂地质条件下煤矿水害形成机理与防控技术研究 学科名称 矿业工程 博 士 生 刘小明 指导老师 来兴平 摘 要 随着我国煤炭生产重心不断西移, 西部矿区在保障国家能源安全方面将发挥越来越 重要的作用,亟需在保证安全与环境容量允许范围的前提下,经济高效采出煤炭,实现 科学采矿。 而复杂地质条件下煤矿水害防控是当前制约煤矿安全的重要难题。 针对宁东 矿区羊场湾煤矿复杂水文地质条件,通过地质勘察、水文地质渗流建模构建、工作面覆 岩裂隙场相似模拟、围岩应力演化特征分析、煤层底板突水系数分析等方法,系统研究 了采动影响下羊场湾煤矿水害形成机理,初步形成了羊场湾煤矿水害综合防控治理体 系。 研究成果对复杂水文地质条件煤矿的水害防控治理有重要的借鉴意义。 主要研究成 果如下 (1)总结了羊场湾煤矿水文地质条件及煤层埋藏条件。运用地质调研、钻孔抽水 等多重了地质勘查技术, 研究矿井及工作面受采掘破坏或者影响的含水层及水体、 矿井 及周边老空水分布状况及其概况。 勘察资料反映出羊场湾煤矿水文地质条件和开采条件 十分复杂。 羊场湾煤矿二煤层开采主要充水水源是直罗组底部砂岩段至二煤顶板砂岩含 水层组水和构造裂缝带充水, 六煤层开采主要充水水源为第四系含水层水、 二煤至八煤 间煤岩层组粗砂岩砂岩含水层组水、二煤磁窑堡扩建井各区段采空区积水和 Y142 采空 区积水。 (2)揭示了考虑复杂水文条件的煤岩体宏观力学特性。开展自然和饱水状态的煤 岩样压缩实验, 对比不同状态下煤岩样的宏观破坏特征。 饱水煤岩非稳定破坏阶段不明 显,饱水煤样应力跌落时间较长且出现曲线呈现下凹型的双峰变化;此外,饱水煤岩内 部裂隙更容易发生多次贯穿,更加破碎。饱水岩样的声发射信号特征要剧烈,振铃计数 和能率数量级要高, 说明饱水使煤岩发生多个阶段的破坏。 借助相似模拟实验及热红外 辐射监测, 模拟宏观尺度下煤岩体裂隙场演化规律及破坏过程, 为后续顶板水害防治提 供科学依据。 万方数据 (3)确定了羊场湾煤矿真实开采环境下地下水的渗流规律及上覆围岩应力演化特 征。采用 MODFLOW 软件建立高精度三维渗流模型,自编程序实现了对真实条件地下 水运动的模拟, 对真实条件下煤矿的涌水量进行了预测, 计算结果显示, 因为排水标高、 所穿越的岩层、工作面面积等不同,工作面各回采段回采期间涌水量也不尽相同。如果 不在回采前采区防治水工程措施,回采期间一分区涌水量最大值为 81580.84m3/d,最小 值为 617.60m3/d。二分区涌水量最大值为 35040.02m3/d,最小值为 733.80m3/d。 (4)明确了羊场煤矿水害发生的类型。得出了该矿 1井由矿井涌水为主导的复杂 水文地质类型、 2井老空水分布为决定因素的复杂水文地质类型, 这足以说明羊场湾煤 矿一号井今后防治水工作的重点是矿井涌水量,二号井今后防治水工作的重点老空水。 结合羊场湾煤矿现场钻孔数据及煤矿底板突水系数评价方法, 基于克里格插值法修正了 突水系数的插值计算方法。 结果表明新方法可显著提高突水系数的计算精度, 并预测羊 场湾矿区底板突水危险区域北部西部东南部,为后续防治技术提供了研究基础。 (5)形成了羊场湾煤矿复杂条件下水害综合防治体系。开展水文地质钻探、物探 和化探工作;通过抽放水试验、测井预测工作面及矿井涌水量,掌握其变化和规律,总 结以往各种防治水方法及应用效果, 形成了顶板砂岩水疏放技术, 初步得出适用于羊场 湾煤矿特殊水文地质条件下的煤矿水害综合防控体系。 相关研究成果可为类似矿区煤矿 水害综合防治提供理论指导。 关 键 词复杂水文条件;煤矿开采;水害防控;突水系数;渗流模拟 研究类型应用基础研究 本论文获得以下项目资助 国家重点基础研究发展计划973 计划,2015CB251602 国家自然科学基金煤炭联合基金重点项目U1361206 万方数据 Subject Research on ation mechanism and prevention and control technology of coal mine water damage under complex geological conditions Specialty Mineral Engineering Candidate Liu Xiaoming Supervisor Lai Xingping ABSTRACT As the focus of coal production in China continues to shift to the west, the western mining areas will play an increasingly important role in ensuring national energy security. It is urgent to extract coal economically and efficiently and realize scientific mining under the premise of ensuring the allowable range of safety and environmental capacity. The prevention and control of coal mine water damage under complex geological conditions is an important problem restricting coal mine safety. The author for sheep field bay east ningxia mining area coal mine complex hydrogeological conditions, through the geological survey and hydrogeological overlying rock fissure seepage model build, analog simulation, the characteristics of surrounding rock stress evolution analysis, s of coal seam floor water bursting coefficient analysis, mining system is studied under the influence of ation mechanism of coal mine water hazards in sheep field bay and initially ed a sheep comprehensive prevention and control management system of coal mine water hazards in a bay. The research results have important reference significance for the prevention and control of water damage in coal mines under complex hydrogeological conditions. The main research results are as follows 1 The hydrogeological conditions and coal seam burial conditions of yangchangwan coal mine are summarized. Geological survey, borehole pumping and other geological exploration techniques are used to study the distribution and general situation of aquifer and water body damaged or affected by mining in mine and working face, as well as the distribution of goaf water in mine and surrounding areas. The survey data show that the hydrogeological conditions and mining conditions of yangchangwan coal mine are very 万方数据 complicated. Yangchangwan coal mine is the main water filling source two straight ROM group sandstone at the bottom of the section to two groups of water and coal roof sandstone aquifer structure cracks filled with water, six coal seam mining the main water filling source for quaternary system aquifer water, coal two to eight groups grit sandstone aquifer water between coal strata and coal magnetic kiln fort expansion of each well section section C28 goaf water and Y142 goaf water. 2 Reveal the macroscopic mechanical properties of coal and rock considering complex hydrological conditions. The natural and full water compression experiments were carried out to compare the macroscopic failure characteristics of coal and rock samples under different conditions. The unstable failure stage of water-filled coal rock is not obvious, the stress drop time of water-filled coal sample is long, and the curve shows the change of double-peak with concave shape. In addition, the cracks in the saturated coal rock are more likely to occur multiple penetration and more fracture. The characteristics of ae signals of the saturated rock samples were severe, and the ringing count and energy rate were higher, indicating that the coal rock was destroyed in several stages due to the saturated water. With the help of similar simulation experiments and thermal infrared radiation monitoring, the evolution law and failure process of the fracture field of coal and rock mass under the macroscopic scale were simulated, which provided scientific basis for the prevention and control of the subsequent roof water damage. 3 The seepage law of groundwater and the stress evolution characteristics of overlying surrounding rock in the real mining environment of yangchangwan coal mine are determined. MODFLOW software is adopted to establish the three dimensional seepage model has high precision, using VB language to realize the simulation of real condition of groundwater movement, on the real conditions of coal mine water inflow forecast, calculation results show that because the drainage level, through the rock, mining area, the working face water inflow during the recovery period of stoping are different. If the water prevention and control measures are not taken in the mining area before stoping, the maximum amount of water inflow in one area during stoping is 81580.84m3/d, and the minimum amount is 617.60m3/d. The maximum water inflow in the two zones is 35040.02m3/d, and the minimum is 733.80m3/d. 4 The paper discusses the types of coal mine water damage in Yangchangwan coal mine. The complex hydrogeological type dominated by mine water inrush and the complex hydrogeological type dominated by goaf water distribution in well no. 2 are obtained, which is enough to indicate that mine water inrush is the key to water prevention and control in well 万方数据 no. 1 of yangchangwan coal mine and goaf water is the key to water prevention and control in well no. 2. According to the drilling data of yangchangwan coal mine and the uation of water inrush coefficient of coal floor, the interpolation calculation of water inrush coefficient is modified based on kriger interpolation . The results show that the new can significantly improve the calculation accuracy of water inrush coefficient, and predict the north west southeast of the floor water inrush danger area of yangchangwan mining area, which provides the research foundation for the follow-up prevention technology. 5 To a comprehensive water disaster prevention and control technical system under complex conditions in yangchangwan coal mine. To carry out hydrogeological drilling, geophysical and geochemical exploration; Through pumping draining water test, well logging prediction of working face and mine water inflow, master its changes and rules, summarize various water prevention and control s and application effects, the roof sandstone water drainage technology is ed, and the comprehensive prevention and control system of coal mine water damage is preliminarily obtained under the special hydrogeological conditions of yangchangwan coal mine. The related research results can provide theoretical guidance for the comprehensive prevention and control of water damage in similar mining areas. Key words Complex hydrological conditions; Coal mining;Water disaster prevention and control;Water inrush coefficient;Seepage simulation Research type basic application research Financial support for this work was provided by the 973 Key National Basic Research Program of China No.2015CB251602, the Key National Natural Science Foundation of China No.U1361206, Support from these agencies is gratefully acknowledged. 万方数据 目录 I 目 录 1 绪论 ....................................................................................................................................... 1 1.1 选题的背景及研究意义 ............................................................................................. 1 1.2 煤矿水患防治理论国内外研究现状 ......................................................................... 1 1.2.1 煤矿开采水文地质特征研究进展 ................................................................... 1 1.2.2 煤矿开采水患研究进展 ................................................................................... 6 1.2.3 煤矿开采水患防治综述 ................................................................................. 11 1.3 研究内容与技术路线 ............................................................................................... 12 2 复杂地质条件下水文地质特征综合勘察及分析 ............................................................. 14 2.1 地质赋存复杂性 ....................................................................................................... 14 2.1.1 井田地层复杂性 ............................................................................................. 14 2.1.2 区域构造复杂性 ............................................................................................. 14 2.1.3 水文地质复杂性 ............................................................................................. 17 2.2 矿井生产及采空区分布 ........................................................................................... 17 2.2.1 矿井生产情况 ................................................................................................. 17 2.2.2 采空区分布 ..................................................................................................... 18 2.2.3 老窑水分布 ..................................................................................................... 22 2.3 本章小结 ................................................................................................................... 24 3 复杂地质条件下煤岩体特性及破坏特征 .......................................................................... 25 3.1 自然与饱水状态煤岩体力学实验 ........................................................................... 25 3.1.1 煤体实验分析与结果 ..................................................................................... 26 3.1.2 岩体实验分析与结果 ..................................................................................... 33 3.2 煤岩体裂隙场演化特征相似模拟实验 ................................................................... 39 3.2.1 相似模拟参数及模型构建 ............................................................................. 39 3.2.2 模型实验结果 ................................................................................................. 40 3.2.3 采动覆岩运移规律 ......................................................................................... 43 3.2.4 覆岩破断声发射结果分析 ............................................................................. 46 3.2.5 基于热红外辐射特征的覆岩裂隙场演化规律 ............................................. 49 3.3 本章小结 ................................................................................................................... 52 4 复杂地质条件下煤岩体渗流数值计算 ............................................................................. 53 4.1 矿井地下水数学模型构建 ....................................................................................... 53 万方数据 西安科技大学博士学位论文 II 4.1.1 数学模型提出 ................................................................................................. 53 4.1.2 数学模型求解原理 ......................................................................................... 54 4.1.3 计算模型及其数学描述 ................................................................................. 55 4.1.4 数学模型含水层结构 ..................................................................................... 56 4.2 矿井地下水数学模型参数设置 ............................................................................... 57 4.2.1 渗流区域剖分 ................................................................................................. 57 4.2.2 模型参数设置 ................................................................................................. 58 4.2.3 数值模型计算 ................................................................................................. 59 4.2.4 研究区边界条件 ............................................................................................. 64 4.2.5 模型的识别验证 ............................................................................................. 65 4.3 矿井地下水数值模拟分析及结果 ........................................................................... 68 4.3.1 抽水孔的实测降深与计算降深的 s-t 拟合分析 ........................................... 68 4.3.2 二煤层不同开采时期对地下水渗流场的影响 ............................................. 70 4.4 矿井覆岩应力演化特征数值分析 ........................................................................... 72 4.4.1 数值模型构建 ................................................................................................. 72 4.4.2 围岩状态分析 ................................................................................................. 72 4.4.3 水平与垂直应力分析 ..................................................................................... 74 4.5 本章小结 ................................................................................................................... 78 5 羊场湾煤矿水害发生机理 ................................................................................................. 79 5.1 水害类型 ................................................................................................................... 79 5.1.1 顶板水害 ......................................................................................................... 79 5.1.2 烧变岩水害 ..................................................................................................... 80 5.1.3 底板水害 ......................................................................................................... 81 5.1.4 老空水害 .....................................................