邹庄煤矿7401工作面综放开采防水煤柱留设研究(1).pdf
工程硕士专业学位论文 邹庄煤矿 7401 工作面综放开采 防水煤柱留设研究 Study on the Setting of Water-proof Coal Pillar in Fully Mechanized Caving Mining at 7401 Working Face of Zouzhuang Coal Mine 作 者郭祥瑞 导 师李小琴教授 中国矿业大学 二○一九年五月 万方数据 学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即 ①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 万方数据 中图分类号 P64 学校代码 10290 UDC 550 密 级 公开 中国矿业大学 工程硕士专业学位论文 邹庄煤矿 7401 工作面综放开采 防水煤柱留设研究 Study on the Setting of Water-proof Coal Pillar in Fully Mechanized Caving Mining at 7401 Working Face of Zouzhuang Coal Mine 作 者 郭祥瑞 导 师 李小琴副教授 申请学位 工程硕士专业学位 培养单位 资源学院 学科专业 地质工程 研究方向 煤矿水文地质 答辩委员会主席 曹丽文 评 阅 人 二○一九年五月 万方数据 致谢致谢 本论文是在李小琴副教授的悉心指导下完成的, 首先非常幸运成为李小琴老 师的学生,论文选题之时,李老师还在遥远的美国,但她依然认真负责,百忙之 中为即将毕业的同门师兄弟拟定论文题目并进行指导。 同时老师也非常尊重学生 的意见和想法, 为学生的论文撰写提供了良好的条件。 李老师在工作中孜孜不倦, 生活中平易近人,她身上所散发的人格魅力是我今后努力的标杆。 感谢李文平教授、孙如华副教授、王档良副教授、李小琴副教授、张志勇高 工在论文选题时给予的宝贵意见与指导。感谢胡彦博博士、仝腾硕士、宋志刚硕 士、王业鹏硕士、陆秋妤硕士在论文撰写思路以及资料搜集和数据整理上给予的 帮助,感谢何昭宇硕士、张玉旗硕士、徐跃强硕士、江传文硕士、李路硕士、程 培毅硕士、曹海刚硕士、刘世超硕士在试验中提供的意见与帮助。 感谢淮北邹庄煤矿在进行资料搜集和现场调研时提供的支持。 同时感谢我的女朋友许椿同学在论文撰写过程中的陪伴以及提供的宝贵建 议,感谢家人和朋友对我学业的支持与帮助,尤其是我的父母,他们是我坚强的 后盾,他们默默付出,不露于表,对我无条件的支持是我今后奋斗的动力 万方数据 I 摘摘 要要 水体下采煤时,防隔水煤(岩)柱的留设关系到整个矿井的安全生产。目前 防隔水煤(岩)柱留设方法通常是按照“三下”规范(2017 版)的规定来进行 的,理论与实践成果表明,采用“三下”规范中经验公式计算综放开采导水裂隙 带高度时具有一定的局限性, 因此需要确定合理的理论公式对综放开采导水裂隙 带高度进行预测,从而确定防隔水煤(岩)柱的合理留设尺寸,这对近松散层下 综放开采突水溃沙灾害防治具有重要的实际应用价值,可以进一步解放滞留煤 量,提高开采上限,同时对国内相似条件矿井开采具有推广应用价值。 本论文以淮北邹庄煤矿 7401 工作面为研究对象,根据矿井现有地质资料以 及煤岩层物理力学性质,采用现场钻孔施工、深部土、风氧化岩石矿物成分分析 试验、理论分析、数值模拟计算等方法,对邹庄矿 7401 工作面防水煤柱的合理 留设问题进行了研究。 (1)对邹庄矿进行调研,收集相关现场资料,进一步确定实验场地和收集 试验材料,分析了矿井与工作面地质、水文地质特征。 (2)根据岩芯鉴定和钻孔资料统计结果,分析得到邹庄矿基岩风化带底板 深度以及风化带的岩性组成, 确定其工程地质性质对巨厚松散层下缩小保护煤岩 柱提高煤层开采上限具有重要意义;通过邹庄矿四采区多个钻孔资料分析得出 7401 工作面土-岩接触类型主要为砂土-泥岩接触带和粘土-泥岩接触带,研究得 出工作面的深部土岩接触带是可以作为防水保护层的, 从而可以通过缩小防水煤 柱的方法进一步提高回采上限。 (3)取工作面内钻孔一定深度的土样和岩样进行试验,测试深部土以及风 氧化带岩石矿物成分,进一步研究其工程地质性质,通过分析得出岩、土样中蒙 脱石具有良好的隔水性能,吸水易膨胀,可使裂缝弥合,抑制裂隙的发育,减小 导水裂隙带的高度。 (4)通过“三下”规范经验公式、多因素拟合公式以及其它的经验公式计 算工作面导水裂隙带的高度,同时以邹庄煤矿 7401 工作面为原型,依据工作面 的勘察钻孔柱状图及煤岩层物理力学参数,利用数值模拟软件 FLAC3D 对煤层 开采过程进行分析,研究厚松散层下综放开采工作面导水裂隙带的发育高度。对 比多种理论计算公式得到的导水裂隙带高度, 得出多因素拟合公式、其他经验公 式以及数值模拟预计的导水裂隙带高度差距较小,有一定的统一性,最终确定导 水裂隙带高度为 109m。 (5)分析不同土-岩接触类型下保护层的厚度,通过工作面水文地质条件, 依据其水体类型、含水层的富水性、赋存条件等确定水体采动等级,防水安全煤 万方数据 II (岩) 柱其高度大于等于导水裂隙带高度与保护层厚度之和,经过计算最终得出 防水安全煤(岩)柱的合理留设高度为 140m。 研究结果确定了 7401 工作面防水煤(岩)柱的留设尺寸,对提高煤层开采 上限具有一定的参考价值, 同时对淮北地区以及国内相似矿井突水溃沙防治具有 借鉴意义。 本论文有图 27 幅,表 11 个,参考文献 98 篇。 关键词关键词顶板水害;土-岩接触带;导水裂隙带;数值模拟;防隔水煤(岩)柱 万方数据 III Abstract When mining under water, the retention of water-proof coal rock column is related to the safety production of the whole mine. The water proof coal rock this column is usually in accordance with the “three times“ 2017 edition of norms, the theory and practice results show that the empirical ula calculation in the “three under“ specification lead water fracture zone height of full-mechanized caving mining has certain limitations, so you need to determine a reasonable theoretical ula to forecast the water fractured zone height of full-mechanized caving mining, so as to determine the water proof this reasonable size of coal rock column, the water inrush of full-mechanized caving mining under the nearly loose bed collapse disaster prevention has important practical application value, can be further liberate trapped coal, improving mining limit, At the same time, it has the value of popularization and application to the domestic similar mining. This paper is to huaibei ZouZhuang coal mine 7401 working face as the research object, according to the existing mine geological data and physical and mechanical properties of coal strata, the in-situ drilling construction, deep soil, wind oxidized rock mineral composition analysis experiment and theoretical analysis, numerical simulation , to ZouZhuang mine 7401 working face of waterproof coal pillar of reasonable design, is studied. 1 investigate zouzhuang mine, collect relevant field data, further determine the experimental site and collect test materials, and analyze the geological and hydrogeological characteristics of mine and working face. 2 Based on core identification and statistical results of borehole data, the bottom depth and lithological composition of weathered zone of bedrock in zouzhuang mine are analyzed, and the determination of its engineering geological properties is of great significance to the reduction and protection of coal-rock pillars under extremely thick loose bed and the increase of mining upper limit of coal seam. Through four Zou Zhuang ore mining area of multiple drilling data analysis - 7401 face soil types are mainly sand - shale rock contact contact zone and contact with clay, shale, study working face of deep soil rock contact zone can be as a waterproof layer, which can further improve by using the of reducing waterproof coal pillar mining upper limit. 3 Take working face in a certain depth of soil sample and drilling core sample 万方数据 IV test, the test of deep soil, and the wind oxidized zone of rock mineral composition, further study on its engineering geological properties, through the analysis of the rock and soil samples drawn montmorillonite has a good waterproof perance, water absorption expansion, can make the crack bridging, inhibit the development of crack, reduce the water flowing fractured zone height. 4 By “three under“ specification experience ula, multi-factor fitting ula and other experience ula of working face water flowing fractured zone height, at the same time to Zou Zhuang coal mine 7401 working face as the prototype, on the basis of survey and drilling histogram and working face in coal rock physical and mechanical parameters, by using numerical simulation software FLAC3D analysis of coal seam mining process, the thick loose bed of full-mechanized caving mining face under the development of conductivity fracture zone height. By comparing the height of the water-conducting fracture zone obtained by various theoretical calculation ulas, the multi-factor fitting ula, other empirical ulas and the height difference of the water-conducting fracture zone predicted by the numerical simulation are obtained, showing a certain uniity. Finally, the height of the water-conducting fracture zone is determined to be 109m. 5 Analysis under different soil - rock contact type, the thickness of protection layer, through the hydrogeological conditions, on the basis of its water body type, the aquifer, the occurrence condition of mining water level is determined, such as its high waterproof safety coal rock column is greater than or equal to the sum of water flowing fractured zone height and covering layer thickness, through calculation and finally the waterproof coal rock of safety pillar of reasonable design, the height is 140 m. The results of research certaining reference value for raising the upper limit of mining in the 7401 working face of Zouzhuang Coal Mine.At the same time,it has reference significance for the prevention and control of water inrush in Huaibei area and similar mines in China. This paper has 27 figures,11 tables and 98 references. KeywordsRoof water damage;soil-rock contact zone;water-conducting fracture zone;numerical simulation;anti-water-proof coal rock column 万方数据 V 目目 录录 摘摘 要要 I 目目 录录 V 图清单图清单 IX 表清单表清单 XI 变量注释表变量注释表 XII 1 绪论绪论 1 1.1 研究背景与意义 1 1.2 国内外研究现状 1 1.3 研究内容与技术路线 10 2 研究区地质、水文地质条件概况研究区地质、水文地质条件概况 12 2.1 矿井地质条件 12 2.2 矿井水文地质条件 16 2.3 7401 工作面地质与水文地质条件 17 3 深部土深部土-岩接触带隔水性能分析岩接触带隔水性能分析 23 3.1 土-岩接触带类型的划分 23 3.2 深部土、风氧化岩石矿物成分分析 25 3.3 土-岩接触带三轴渗透试验研究 32 3.4 本章小结 34 4 7401 工作面导水裂隙带高度计算工作面导水裂隙带高度计算 36 4.1 “三下”规范公式计算导水裂隙带高度 36 4.2 多因素公式计算导水裂隙带高度 38 4.3 其他经验公式计算导水裂隙带高度 41 4.4 数值模拟计算导水裂隙带高度 43 4.5 本章小结 55 5 保护层厚度及防水煤柱高度确定保护层厚度及防水煤柱高度确定 57 5.1 砂土-泥岩接触带保护层厚度及防水煤柱高度确定 57 5.2 粘土-泥岩接触带保护层厚度及防水煤柱高度确定 59 5.3 本章小结 60 6 结论结论 62 万方数据 VI 参考文献参考文献 64 作者简历作者简历 70 万方数据 VII Contents Abstract ....................................................................................................................... III Contents .................................................................................................................... VII List of Figures .......................................................................................................... XIX List of Tables ............................................................................................................... XI List of Variables.........................................................................................................XII 1 Introduction ............................................................................................................... 1 1.1 Research Significance .............................................................................................. 1 1.2 Research Status at Home and Abroad ...................................................................... 1 1.3 The Research Content, and Technical Route .......................................... 10 2 Geological and Hydrogeological Conditions in the Study Area .......................... 12 2.1 Mine Geological Conditions .................................................................................. 12 2.2 Mine Hydrogeological Conditions ......................................................................... 16 2.3 Geological and Hydrogeological Conditions of Working Face 7401 .................... 17 3 Analysis of Water-blocking Perance of Deep Soil-rock Contact Belt......... 23 3.1 Classification of Coil-rock Contact Zone Types .................................................... 23 3.2 Analysis of Mineral Composition of Deep Soil and Wind-oxidized Rock ............ 25 3.3 Triaxial Permeability Test of Soil-rock Contact Zone ........................................... 32 3.4 Summary ................................................................................................................ 34 4 Height Calculation of Water-conducting Fracture Zone of 7401 Working Face ...................................................................................................................................... 36 4.1 The “three bottom“ ula Calculates the Height of the Water-conducting Fracture Zone ............................................................................................................... 36 4.2 Multi-factor ula for Calculating the Hei