永宁煤矿上行开采可行性及巷道合理位置研究.pdf
万方数据 万方数据 太原理工大学硕士研究生学位论文 I 永宁煤矿上行开采可行性及巷道合理位置研究 摘 要 近年来我国经济飞速发展,其中煤炭作为能源结构中的重要一环,对经 济的发展起到了重要的作用。山西吕梁离石永宁煤业由于以往地质勘查不详, 将 3煤层划为不可采煤层,目前的开采实践表明,已采 4煤上部 3煤可布置 回采工作面。但由于受到 4煤层的采动影响,层间岩层受到一定程度的破坏, 且 3煤下方部分区域为采空区,巷道布置情况受下组煤开采影响,因此上组 煤是否可采以及工作面回采巷道的合理位置如何确定是一个难题。本文采用 理论分析、数值模拟、现场实践的方法对上组煤开采可行性与工作面巷道的 合理位置进行了研究,研究结果如下 (1)分析了近距离煤层层间岩层结构,将层间岩层结构以有无控制岩层 为条件分为层间无主控岩层结构、层间单一主控岩层结构以及层间多主控岩 层三种类别,并根据层间岩层物理力学特性,计算了永宁煤矿近距离煤层层 间各岩层载荷及破断规律,确定永宁煤矿下组 4煤层顶板第 8 层砂质泥岩为 控制岩层,即永宁煤矿近距离煤层是属于层间单一主控岩层结构。以此为基 础,采用“三带”判别法、围岩平衡判别法以及比值判别法三种理论方法,确定 永宁煤业 3煤层可采用上行开采方式。 (2)通过 FLAC3D 三维数值模拟软件分析了永宁煤业 4煤层不同工作 面长度回采时对 3煤层的影响, 研究结果表明 4煤开采后会对 3煤局部位置 产生影响,但未贯通整个煤层,煤层仍具有一定连续性,因此确定 3煤可采 万方数据 太原理工大学硕士研究生学位论文 II 用上行开采方式。 (3)采用理论分析与现场实测的方法,研究了永宁煤业近距离煤层下组 煤开采后层间岩层垮落及裂隙发育特征,对层间距与下组煤裂隙带分区关系 进行了分类,并基于现场窥视结果确定永宁煤矿 3煤层位于 4煤层裂隙带内 一般断裂区内,回采工作面巷道位置应避开裂隙发育区与应力增高区。 (4)通过数值模拟分析方法,确定了 4煤开采后,3煤层内的应力集中 区域。在工作面倾斜方向上,应力集中区域为采空区煤壁帮侧 6.525.3m、采 空区内 9.146.9m, 与 4煤层工作面分别为外错和内错关系。 在工作面推进方 向上,应力集中峰值点位于 4煤层开切眼后方 10m 处,而在 4煤层开切眼位 置前方距离大于 6m 范围内,煤层内应力均低于原岩应力。 (5) 对上组 3煤首采 4207 工作面巷道布置方案与支护方案进行了设计, 4207 工作面回风巷采用外错布置方式,外错距离为 2m;运输巷道采用内错布 置方式,内错距离为 3m,4207 工作面开切眼布置在下组煤工作面开切眼超前 6m 位置处。巷道采用锚杆锚索金属网联合支护方式。 (6)在方案确定后对巷道掘进至 150m 内的围岩变形量进行了监测,确 定巷道掘进影响范围约为 30m,围岩变形量整体较小,围岩控制情况较好。 截止到 2018 年 12 月,永宁煤矿 3煤层已成功回采 4 个工作面,并且回采过 程中未出现明显的矿压显现情况,经济效益具有明显的提升,表明本文研究 结果具有较好的应用效果。 关键词近距离煤层,上行开采,层间岩层结构,巷道布置方案,围岩变形 万方数据 太原理工大学硕士研究生学位论文 III RECEARCH ON FEASIBILITY OF UPWARD MINING AND REASONABLE LOCATION OF ROADWAY IN YONGNING COAL MINE ABSTRACT In the past few years,our economy has made a great progress.As a main energy source in our country, coal accounts for more than 65 of non-renewable energy structure,and it will play an important role for a long time in the future.Yongning Coal Mine is a integrated mine in Lvliang of Shanxi Province. In the past, it was not found that there is relatively stable coal seam above the 4 coal seam because of the geology exploration.Now,there is a stable coal seam and it can arrange working faces.Because of the impact of mine in 4 coal seam, the part of rocks had been dameged in coal seams.And it is goaf under 3 coal seam,the position of roadway will be influenced due to the 4 coal seam,so it is an issure that setting up a right relationship of working faces of close coal seams.This article will research the feasibility of upward mining and the reasonable position of working faces in close coal seams by the s including theoretical analysis,numerical simulation and field practice.The specific results including 1 This article analyzed the construction of rock ation in close coal seams.The construction of rock ation was divided into three sorts,including non-critical layer structure,the single key stratum structure and the several key stratum structure. According to the physico-mechanical characteristics of rock ation in close coal seams, the load and breaking rules of each rock layer in the close coal seam of Yongning Coal Mine are calculated, and the 8th layer sandy mudstone of the 4 coal seam roof of Yongning Coal Mine is determined as the 万方数据 太原理工大学硕士研究生学位论文 IV key layer, namely Yongning Coal Mine. The coal seam is a single sub-critical layer structure between the layers. Based on this, three theoretical s of “three-band” discriminant , surrounding rock balance discriminant and ratio discriminant are used to determine that the coal mining layer of the 3 coal seam of Yongning Coal Industry can adopt the upward mining . 2 Through FLAC3D three-dimensional numerical simulation software, the influence of different working face lengths of 4 coal seam in Yongning Coal Industry on the 3 coal seam was analyzed. The research results show that after 4 coal mining, it will affect the local position of 3 coal, but it does not penetrate the entire coal seam. The coal seam still has a certain continuity, so it is determined that the 3 coal can adopt the upward mining . 3 Using theoretical analysis and on-site measurement s, the characteristics of interlayer rock strata and fracture development after coal mining in the near-coal coal seam of Yongning Coal Industry were studied, and the relationship between layer spacing and the sub-coal fissure zone was studied. Classification, and based on the results of on-site peeping, it is determined that the coal seam relationship between the upper and lower groups of Yongning Coal Mine belongs to the second category, that is, the coal seam in the 3 coal seam is located in the general fault zone within the fracture zone of the 4 coal seam, and the location of the roadway in the mining face should avoid the fracture development zone and Stress increase zone. 4Throughthenumericalsimulationanalysis,thestress concentration area in the coal seam of the 3 coal seam after the 4 coal mining is determined. In the oblique direction of the working face, the stress concentration area is 6.525.3m in the goaf of the goaf and 9.146.9m in the goaf, and the working face of the 4 coal seam is the external fault and the internal fault. In the direction of propulsion of the working face, the peak point of stress concentration is located 10m behind the open cut of the 4 coal seam, and the internal stress of 万方数据 太原理工大学硕士研究生学位论文 V the coal seam is lower than the original rock stress within the range of more than 6m in front of the open cut of the 4 coal seam. When the upper group coal working face roadway and open cut eye arrangement, the numerical simulation results can be referred to, avoiding the stress concentration area. 5 The layout plan and supporting scheme of the 4207 working face roadway in the 3 coal seam of the upper coal group were designed. The 4207 working face return airway adopts the external wrong arrangement, the internally staggered distance is 2m; the transportation lane adopts the internal fault arrangement. In the mode, the internal error distance is 3m, and the opening surface of the 4207 working surface is arranged at the position 6m ahead of the opening of the lower coal working face. The roadway adopts the anchor rod anchor cable metal mesh joint support . 6 After the scheme is determined, the deation of surrounding rock in tunneling to 150m is monitored. The influence of tunneling is about 30m. The deation of surrounding rock is small and the surrounding rock control is better. As of December 2018, the coal seams of the 3 coal seam of the Yongning Coal Mine have successfully recovered 4 working faces, and there is no obvious occurrence of mine pressure during the mining process, and the economic benefits have improved significantly, indicating that the research results are better. Application effect. KEY WORDS close-distance coal seam, up-draft mining, interlayer rock stratum structure, roadway layout scheme, surrounding rock deation 万方数据 太原理工大学硕士研究生学位论文 VI 万方数据 太原理工大学硕士研究生学位论文 VII 目录 第一章第一章 绪论绪论................................................................................................................................... 1 1.1 研究背景及意义.............................................................................................................. 1 1.2 国内外研究现状.............................................................................................................. 2 1.2.1 采场覆岩结构研究现状....................................................................................... 2 1.2.2 上行开采技术研究现状....................................................................................... 3 1.2.3 覆岩裂隙演化研究现状....................................................................................... 7 1.3 研究内容、方案及技术路线.......................................................................................... 8 第第二二章章 矿井概况矿井概况..........................................................................................................................11 2.1 矿井地理概况.................................................................................................................11 2.1.1 位置、范围和交通条件.......................................................................................11 2.1.2 地形地貌..............................................................................................................11 2.1.3 水系及主要河流...................................................................................................11 2.1.4 气象及地震情况..................................................................................................11 2.2 井田地质构造.................................................................................................................11 2.3 矿井开采煤层及煤质.................................................................................................... 12 2.3.1 煤层..................................................................................................................... 12 2.3.2 煤质..................................................................................................................... 12 2.4 顶底板条件.................................................................................................................... 13 2.5 4煤层采空区情况......................................................................................................... 14 第三章第三章 近距离煤层上行开采可行性理论研究近距离煤层上行开采可行性理论研究.........................................................................15 3.1 近距离煤层层间岩层结构分析.................................................................................... 15 3.2下组煤覆岩垮落特征理论分析.................................................................................. 17 3.2.14煤层顶板各分层岩层载荷计算................................................................... 17 3.2.24煤层顶板各岩层断裂特征计算................................................................... 21 3.3 综采工作面上行开采可行性判别研究........................................................................ 23 3.3.1 “三带”判别法................................................................................................. 23 万方数据 太原理工大学硕士研究生学位论文 VIII 3.3.2 围岩平衡判别法................................................................................................. 25 3.3.3 比值判别法......................................................................................................... 25 3.4 本章小结........................................................................................................................ 26 第四章第四章 上组煤开采可行性数值模拟研究上组煤开采可行性数值模拟研究.................................................................................27 4.1 上行开采数值模型设计及模拟方案............................................................................ 27 4.2 上行开采可行性数值模拟结果分析............................................................................ 28 4.2.1 下组煤不同工作面长度下开采后顶板塑性区分布特征................................. 28 4.2.2 下组煤不同工作面长度下上层煤应力分布特征............................................. 32 4.2.3 下组煤不同工作面长度下顶板不同位置围岩位移和破坏特征..................... 40 4.3 本章小结........................................................................................................................ 53 第五章第五章 上组煤回采工作面巷道合理位置研究上组煤回采工作面巷道合理位置研究.........................................................................55 5.1 层间距与下组煤裂隙带结构关系研究........................................................................ 55 5.2 现场窥视结果................................................................................................................ 57 5.3 巷道合理位置数值模拟研究........................................................................................ 59 5.3.1 模型构建............................................................................................................. 59 5.3.2 下组煤开采后上组煤应力集中区域分析......................................................... 59 5.4 本章小结........................................................................................................................ 62 第第六六章章 工业实践及效果分析工业实践及效果分析.....................................................................................................63 6.1 上组煤工作面布置方案................................................................................................ 63 6.2 上组煤工作面巷道支护方案........................................................................................ 64 6.3 巷道掘进期间回采巷道围岩变形特征........................................................................ 66 6.4 实践效果分析................................................................................................................ 67 6.5 本章小结........................................................................................................................ 67 第第七七章章 结论与展望结论与展望..................................................................................................................... 69 7.1 结论................................................................................................................................ 69 7.2 展望................................................................................................................................ 70 参考文献参考文献....................................................................................................................................... 71 致致 谢谢............................................................................................................................................. 75 万方数据 太原理工大学硕士研究生学位论文 IX 附录附录 A攻读硕士攻读硕士学位学位期间的学术期间的学术成果成果...................................................................................77 万方数据 太原理工大学硕士研究生学位论文 X 万方数据 太原理工大学硕士研究生学位论文 1 第一章 绪论 1.1 研究背景及意义 近年来我国经济飞速发展,其中煤炭作为能源结构中的重要一环,对经济的发展起 到了重要的作用,根据国家统计,煤炭在能源结构中所占比重长期超过 60,并且在未 来很长一段时间内,煤炭资源依旧处于十分重要的地位[12]。煤炭无论在工业中还是生 活中都起到十分重要的作用,由于其属于不可再生资源,因此矿井开采过程中,需提高 资源回收率,避免资源的浪费,构建新型节约型矿井。 近距离煤层是指相邻两煤层之间的开采有较大影响的煤层[2]。我国许多矿区均存在 有近距离煤层的赋存,例如在淮北矿区、淮南矿区、徐州矿区、新汶矿区、平顶山矿区、 大同矿区、渭北矿区等。 一般条件下,对于近距离煤层群开采方法多为下行开采方式,即先开采上组煤层, 后开采下组煤层。这是因为煤层开采后对顶板岩层的破坏远大于对底板岩层的破坏,下 行开采可以减轻对相邻煤层的影响[3]。但在煤矿实际生产过程中,由于地质勘探、开采 技术条件以及经济效益等各种原因,先对下部煤层进行了开采,导致上方煤炭资源的丢 失。主要原因包括[4](1)地质勘探不详,在已开采完毕的煤层上方再次勘查到稳定煤 层;(2)原先被划为不可采的煤层在局部位置稳定可采,但此时正在对下方煤层进行 回采,只好遗弃上方煤层;(3)一些矿井为保证矿井经济效益,先对下方煤质好、厚 度大的煤层进行了开采;(4)矿井设计过程中,若按照下行开采方式,上方煤层赋存 条件与生产能力不符,因此对下组煤率先进行了开采。 随着我国煤炭资源的日渐枯竭,如何尽可能的对煤炭资源进行回收,具有重要的科 学研究和应用价值。对于具有近距离煤层群赋存的矿井,采用合理的上行开采方法与巷 道布置方式具有着重要的意义。 吕梁离石永宁煤业有限公司属于资源整合矿井,由于以往地质勘查不详,没有发现 4煤上部存在着相对稳定可采的煤层, 而把永宁煤矿 3煤层划为不可采煤层。 目前的开 采实践表明,已采 4煤上部的 3煤层稳定可采,可布置生产工作面。4煤层与 3煤层 万方数据 太原理工大学硕士研究生学位论文 2 间距平均为 28m,层间岩性主要泥岩、砂质泥岩、砂岩。由于受到 4煤层的采动影响, 层间岩层受到一定程度的破坏,巷道布置情况受下部煤层开采影响较大,因此上组 3 煤层开采是否可行与回采巷道合理位置确定是一个难题。 本文以永宁煤矿近距离煤层上行开采为具体的工程背景, 对上组煤开采可行性与工 作面回采巷道合理位置进行了研究,提出了工作面巷道布置方案,该研究结果不仅能够 提高矿井经济效益,延续矿井生命,增大煤炭资源的回采率,同时对类似条件煤层的安 全、高效、科学开采具有重要意义。 1.2 国内外研究现状 1.2.1 采场覆岩结构研究现状 采场覆岩结构研究主要集中在采场矿压以及覆岩运移特征两方面, 其发展历程主要 分为早期与后期两个阶段, 每个阶段的研究结果均在不同方面对现场形成的覆岩结构特 征进行了解释,对煤矿现场工作的指导具有重要意义。 早期人们对采场覆岩结构的研究主要处于认识阶段,形成了压力拱假说、悬臂梁假 说、铰接岩块假说、预成裂隙假说等。 压力拱假说对采场超前支承压力与支架承载情况进行了解释, 并且对回采空间应力 降低现象做出了经典的解释,但该假说对各应力区分布范围仅做出了大概划分,在现场 实际应用中并无太大作用。 悬臂梁假说给出了回采空间内顶板下沉与支架工作阻力之间 的作用关系与计算公式,并揭示了顶板周期来压现象的根本原因,但并未对覆岩运动规 律进行研究,导致理论计算结果与现场实测结果相差较大。铰接岩块假说揭示了采场覆 岩结构的演变与分区特征,提出了顶板岩层垮落的条件,同时对围岩与支架的相互作用 关系进行了解释,给出了“给定变形”与“给定载荷”两种平衡结构,该假说能够解释 现场出现的周期来压现象,为之后覆岩结构的研究奠定了