平朔东露天煤矿精煤槽仓高边坡稳定性评价研究.pdf
专 业 硕 士 学 位 论 文 平朔东露天煤矿精煤槽仓 高边坡稳定性评价研究 晁 军 导师姓名职称 苏生瑞 教授 申请学位级别 硕士 专业学位类别 及领域名称 专业硕士 地质工程 论文提交日期 2014 年 5 月 20 日 论文答辩日期 2014 年 6 月 5 日 学位授予单位 长安大学 分类号 10710- 分类号P642 10710-20048129 万方数据 The stability uation of high slopes around the cleaned-coal bunker of east-opencast-coal mine A Dissertation ted for the Degree of Master CandidateChao jun Supervisorprof.Su Shengrui Chang’an University, Xi’an, China 万方数据 万方数据 I 摘 要 平朔东露天煤矿场址区工程地质条件相当复杂,边坡稳定问题十分突出,对其展开 深入研究,对于优化边坡结构设计、保障拟建精煤仓设施的长期安全,均具有十分重要 的意义。本文以平朔东露天煤矿精煤槽仓高边坡为研究对象,研究目标为分析场地边坡 变形和地质灾害发育规律,评价拟建精煤仓边坡在各种工况下的稳定性,提出边坡处置 建议。 东露天矿区及重点斜坡工程的勘察结果表明,研究区槽仓位置存在 7 个滑坡和 1 个 不稳定斜坡,其中 H3 至 H7 滑坡及不稳定斜坡,与重点研究的拟建槽仓位置相隔较远, 对其安全性影响不大,且该 5 个滑坡在去年 7 月份已被平整;H1 与 H2 滑坡与原拟建槽 仓相距较近为本次研究的重点。研究区内滑坡主要是由于黄土的湿陷以及坡脚的长期侧 蚀导致坡体的重力牵引作用相对加大造成的。其中,水沿坡上及坡下洼地长期侵入并导 致红层饱水是诱发斜坡失稳的最主要外因。 结合现场试验与室内试验成果,进行了天然状态与开挖状态下边坡的稳定性与变形 分析,主要结论如下 采用本次模拟的支护方式及参数对拟建槽仓进行模拟发现,即便在地震和暴雨耦合 作用下的这一最危险状态,其垂直方向的最大位移也只有 300mm,但通过三维塑性区 分布可以看出, 地表以下存在连续的拉伸破坏带, 在今后的运营期要采取防雨防水措施。 从槽仓边坡开挖后的稳定性与变形分析,可以得出拟建槽仓开挖后是不稳定的,会 产生滑移,尤其是在边坡坡脚处及槽仓直臂段区域,会产生较大的水平位移与应力集中 现象,属于槽仓边坡开挖最危险区域,需进行重点加固。三维塑性区显示,在原始的沟 谷进行回填的地方在计算过程中可能会发生剪切和拉伸破坏,故在槽仓运行期间要防止 其发生滑动。 对槽仓挖方边坡宜采用边开挖边支护的方式施工,槽仓斜壁段以锚杆与土钉联合支 护,槽仓直壁段采用钢内撑和护坡桩(灌注桩)联合支护方式;槽仓暗道顶板处设置一 定厚度的横梁,可以有效抑制边坡发生较大的水平位移。通过开挖支护前后数值模拟的 对比,证明设计中采用的支护加固方式可行。 通过对黄土改良后的击实试验与直剪试验分析,并考虑到原材料的价格,建议采用 石灰改良黄土掺加碎石土与钢塑土工筋带相结合的方法进行支护,可以达到满足工程要 求,并较为经济的目的。 万方数据 II 针对槽仓填方边坡,通过极限平衡分析与有限元分析表明填方表层出现较多拉应 力区与塑性区,可能会出现浅层滑动,需重点控制回填土的压实度,并对表层原状土进 行适度强夯固结;回填土与原状土连接段及回填土底层部分出现塑性区,表明施工中在 该区域需做好不同土质的压实衔接;坡脚与暗道左侧护壁桩底部出现应力集中,属于填 方加固的重点区域,需引起高度重视。 关键词关键词高边坡;边坡稳定性评价;数值模拟;变形分析;填方改良;边坡支护 万方数据 III Abstract The engineering geological conditions of Pingshuo east-Opencast-Coal Mine are very complex and the problem of stability of slopes is quite outstanding. Therefore, an in-depth research on slopes is of vital significance for the optimization of slope structure design and the long-term security of facilities. Taking the high slopes around cleaned-coal bunker of Pingshuo east-Opencast-Coal Mine as the research object, this paper aims to make an uation on the stability of slopes under various load conditions and put forward relevant treatment s, based on the analysis of deation of slopes and development rule of geological hazard. The geological investigation results of East-Opencast-Coal Mine and slopes around showed that there were seven landslides and one unstable slope in the study area, among which the landslides from H3 to H7 and the unstable slope were located far apart from the proposed position of bunker and had little impact on its security, even five of landslides had been leveled in July last year; H1 and H2 landslides lied near to the position of bunker originally proposed, which should be focused on more attention. Landslides in research area were mainly attributable to the increase of gravitational traction caused by the collapsibility of loess and the prolonged erosion along the toe of slope. Among them, the saturation of red layer caused by long-term entry of water in the depressions is the main external cause inducing slope instability. Combining the results of field and laboratory tests and based on the stability and deation analysis of the slopes under natural state and excavation sate, the conclusions can be drawn as follows The simulation of the proposed bunker based on supporting and parameters of slopes, showed that the largest vertical displacement was only 300 mm, even under the combined action of earthquake and storm which was the most dangerous state. It could be seen from the distribution of the plastic zone in three dimensional models that there existed continuous tension fracture belt below the surface, where rainproof waterproofing measures should be taken. It could be drawn from the stability and deation analysis of slopes after excavation that the slope was unstable and would slip after excavation, especially at slope foot and straight area where large horizontal displacement and stress concentration phenomenon appeared, these dangerous section need to be specially reinforced. According to the plastic zone in three dimensional models, shear and tensile failure may occur in the backfilling place 万方数据 IV of original channels during the process of calculation, so during the running of the bunker certain measures should be taken to prevent them from sliding. As for the excavation slopes around coal bunker, it was better to excavate soils while supporting them, the joint support of anchor rod and the earth nail was suggested for inclined walls while combined supporting of the steel supporting and protecting piles caisson piles was suitable for straight walls; lager horizontal displacement of slopes could be effectively reduced if a certain thickness of roof beam was set at the top of blind pass. The comparison of numerical simulations before and after the excavation and supporting proved that the design of the supporting was feasible. Based on the analysis of compaction and direct shear test on modified loess, and considering the price of raw materials, it was proposed to mix detritus into the loess improved by lime and combine with the use of the special belt of steel and plastic geotextile for slope support, so that it can meet engineering and economic requirements. The limit equilibrium analysis and finite element analysis of filled slope indicated that there were tension stress zones and plastic zones in the upper layer and shallow slide may occur, so it needs to control the degree of compaction of backfill soil and the dynamically compact the undisturbed soil on the surface; the plastic zones in connection section between backfill soil and undisturbed soil and the bottom part of backfill soil showed that special compaction need be done at the connection position between different layers during construction; the toe of slope and the bottom of retaining piles on the left side of the tunnel, where stress concentration appeared, were the key area of reinforcement, and it should be highly valued. Key words High slopes; stability uation; numerical simulation; deation analysis; filling improvement; slope support 万方数据 v 目目 录录 第一章第一章 绪论绪论 ...................................................................................................................... . 1 1.1 选题背景及研究意义 ................................................................................................... 1 1.2 国内外研究现状 ........................................................................................................... 1 1.3 研究内容及技术路线 ................................................................................................... 5 1.3.1 主要研究内容 ..................................................................................................... 5 1.3.2 论文研究方法和技术路线 ................................................................................. 6 1.3.3 完成的主要工作量 ............................................................................................. 6 第二章第二章 场地地质环境条件场地地质环境条件 ...................................................................................................... 9 2.1 自然地理条件 ............................................................................................................... 9 2.2 场地地形地貌 ............................................................................................................. 10 2.3 工程地质特征 ............................................................................................................. 10 2.4 水文气象特征 ............................................................................................................. 12 2.5 场地地震效应 ............................................................................................................. 13 第三章第三章 岩土体物理力学特性与不良地质问题岩土体物理力学特性与不良地质问题 ................................................................ 14 3.1 岩土体物理力学性质 ................................................................................................. 14 3.1.1 变形与强度特性 ............................................................................................... 14 3.1.2 渗透性 ............................................................................................................... 16 3.1.3 蠕变特性 ........................................................................................................... 17 3.1.4 湿陷性 ............................................................................................................... 18 3.1.5 非饱和强度特性 ............................................................................................... 18 3.1.6 强度参数的综合确定 ....................................................................................... 20 3.2 不良地质现象 ............................................................................................................. 21 3.2.1 滑坡的分布及特征 .......................................................................................... 21 3.2.2 滑坡形成条件及诱发因素 .............................................................................. 28 3.2.3 不稳定斜坡 ....................................................................................................... 29 3.2.4 黄土湿陷 ........................................................................................................... 30 3.3 小结 ............................................................................................................................. 32 第四章第四章 槽仓边坡稳定性与变形评价槽仓边坡稳定性与变形评价 .................................................................................. 33 4.1 边坡评价分析方法 ..................................................................................................... 33 万方数据 vi 4.1.1 极限平衡法 ....................................................................................................... 33 4.1.2 有限元法 ........................................................................................................... 33 4.2 开挖边坡稳定性评价 ................................................................................................. 34 4.2.1 开挖边坡支护前的稳定性 ............................................................................... 34 4.2.2 开挖边坡支护后的稳定性 ............................................................................... 36 4.3 开挖边坡变形评价 ..................................................................................................... 37 4.3.1 本构模型选择 ................................................................................................... 37 4.3.2 支护方案 ........................................................................................................... 38 4.3.3 模型与参数设置 ............................................................................................... 38 4.3.4 开挖边坡支护前的变形分析 ........................................................................... 39 4.3.5 开挖边坡支护后的变形分析 ........................................................................... 39 4.4 小结 ............................................................................................................................. 41 第五章第五章 场地变形三维场地变形三维数值模拟数值模拟 .......................................................................................... 45 5.1 场地岩土体三维结构特征 ......................................................................................... 45 5.2 有限差分分析法 ......................................................................................................... 45 5.2.1 模型的边界条件 ............................................................................................... 46 5.2.2 数值模拟方案设计 ........................................................................................... 48 5.3 支护前后数值模拟结果分析与评价 ......................................................................... 49 5.3.1 边坡开挖支护前的变形分析 ........................................................................... 49 5.3.2 边坡开挖支护后的变形分析 ........................................................................... 52 5.4 小结 ............................................................................................................................. 58 第六章第六章 槽仓边坡填方改良与边坡支护工程建议槽仓边坡填方改良与边坡支护工程建议 .............................................................. 59 6.1 填方段黄土改良 ......................................................................................................... 59 6.1.1 改良方法比选 ................................................................................................... 59 6.1.2 优化方案改良原理 ........................................................................................... 62 6.1.3 填方边坡变形与稳定性分析 ........................................................................... 63 6.2 边坡支护工程建议 ..................................................................................................... 65 6.3 小结 ............................................................................................................................. 67 结结 论论 ....................................................................................................................................... 68 参考文献参考文献 ................................................................................................................................... 70 万方数据 长安大学硕士学位论文 1 第一章第一章 绪论绪论 1.1 选题背景及研究意义 山西平朔煤炭工业公司是我国最大的煤炭基地之一,为进一步挖掘煤炭资源,拟在 朔州市新建东露天煤矿。东露天矿田位于平朔矿区马关河东,勘探区面积 48.73km2,南 北长 6.53~10.3km,东西宽 4.42~5.47km。勘探区有一条大的沟谷,名为麻地沟,上游 由多个支沟汇聚而成,拟建筒仓就修建于一条名为城吉凹沟的支沟;拟建槽仓修建于上 游相邻的支沟西侧黄土梁上。 本文研究区约 1km2,其内配套设施选煤场拟建 20 万吨煤仓两处,其规模堪称国内 第一。原煤仓为 4 个筒仓,直径约 45 米,地下 20 米,地上 40 米;产品仓为槽仓,深 约 35 米、宽 26~40 米,长约 200 米,两侧高边坡坡度约 60。场地为黄土丘陵(峁) 地貌, 拟建煤仓处于黄土上, 场地周围滑坡比较发育, 同时本地区处于Ⅶ度地震烈度区, 整个场址区的工程地质条件相当复杂,周围环境的影响也难以忽视。如此结构和规模的 槽仓高陡边坡,在国内外较为少见,其边坡稳定问题十分突出,对其展开深入研究,对 于优化边坡结构设计、保障拟建精煤仓设施的长期安全,均具有十分重要的意义。 1.2 国内外研究现状国内外研究现状 滑坡是重要的地质灾害之一, 且随着人类工程活动的日益频繁而成为一种主要的地 质灾害类型。我国每年由于边坡失稳而造成的损失达数亿元,给人民的生命和财产带来 了重大的危害和威胁[1-6]。滑坡的触发因素有多种,常见的有降雨和地震,人类的工程 活动也是一个诱发滑坡的重要和常见因素。边坡稳定性分析和评价是滑坡治理和预测的 重要前提,也是边坡研究的核心,开展边坡的稳定性分析和评价工作具有重要的学术价 值和工程意义。关于边坡的稳定性,国内外学者已经进行了广泛的研究。据黄润秋 1991 年对 1979 年到 1987 年的国内刊物检索统计,关于斜坡稳定性分析的文献已达到 224 篇 工程地质文献共 1239 篇,高居各个工程问题之首;而 1985 年到 1988 年期间,国外关 于斜坡稳定性的文章也位居第四[2]。可见关于边坡稳定性的分析研究早已引起学术界的 关注和重视。 边坡稳定性分析的理论的发展与经济发展、工业化建设和人类工程活动等有着直接 的关系。目前边坡的稳定性分析可分为定性研究、定量分析及数值分析。早期的边坡分 析方法以定性分析为主,边坡稳定性的定性分析方法有自然历史分析法、工程类比法和 图解法等。定性分析主要通过工程基础资料的收集和积累来对边坡进行定性的评价。通 万方数据 第一章 绪 论 2 过勘察影响边坡稳定性的主要因素、可能的变形破坏方式和失稳力学机制,用已经发生 变形和破坏的边坡地质体成因和发展、演化史去对现在处于稳定状态的边坡的可能发展 趋势做出定性的解释说明[5]。定性分析方法能够综合的、全面的考虑影响边坡稳定性的 多方面因素,便捷的、快速的对边坡的稳定状况进而发展趋势做出一个判断和评价,但 是无法给出明确的稳定系数和安全系数。工程中广泛应用的定量分析方法主要有极限平 衡法和有限元法两种。 在土力学中,边坡稳定性分析是和土压力和地基承载力同步发展起来的。由法国工 程师库仑于 1776 年提出的挡土墙土压力计算方法标志着土力学雏形的产生。 朗肯W.J.M. Rankine, 1857假设墙后土体各点均处于极限平衡状态,在此基础上建立被 动及主动土压力的计算方法。库仑和朗肯从两种不同的思路出发计算稳定性。这两种方 法被推广到边坡稳定性分析和地基承载力的计算分析中,形成一个体系,即极限平衡法 [1]。 极限平衡法基本特点只考虑静力平衡条件和土的摩尔库伦破坏准则。通过分析土 体在破坏那一刻的平衡来求解问题。由于通常问题为静不定,使用该方法需要引入一些 能够简化问题的假定条件,将静不定问题转化为可求解的静定问题。该方法使得计算工 作大大简化,便于在工