煤矿矸石充填材料压实变形中的力学行为研究.pdf
S 煤 Study o Gan 煤矿矸石 on Mec gue Fi 硕士 石充填 力学 chanic illing M Def 作 导 中国 二〇 士学位论 填材料压 学行为研 cal Beh Materia at 者何泽 师巨 国矿业大 〇一九年 论文 压实变 研究 havior al in C tion 泽全 峰 研究 大学 年五月 变形中 of Coa Compac 究员 的 al Min ction ne 万方数据 学位论文使用授权声明 学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 万方数据 中图分类号 TD823 学校代码 10290 UDC 622 密 级 公开 中国矿业大学 硕士学位论文 煤矿矸石充填材料压实变形中的 力学行为研究 Study on Mechanical Behavior of Coal Mine Gangue Filling Material in Compaction Deation 作 者 何泽全 导 师 巨峰 申请学位 工学硕士 培养单位 力学与土木工程学院 学科专业 工程力学 研究方向 采动岩体力学 答辩委员会主席 周跃进 评 阅 人 匿名 二○一九年五月 万方数据 致致 谢谢 光阴似箭, 岁月如梭, 研究生的生活悄然生息从指间流逝。 回顾三年的时光, 经历了许多挫折与困难,但在遇到这些问题时得到了我的导师和周围同学、朋友 的帮助。在此临近毕业之际,我想借这篇致谢对支持与帮助过我的人表示感谢 首先我要衷心的感谢我的导师-巨峰教授。三年前,我从一名懵懂的本科生 开始进入研究生生涯,有很多事情不了解,往往老师给我布置的学习任务做的错 误百出,巨峰老师循循善诱的教导和诲人不倦的精神让我受益良多。除了在学习 上, 生活中巨峰老师也给予我悉心的帮助与教导, 对我以后的人生目标树立榜样。 生活中,巨峰老师为人随和热情,给予我们这些同学无微不至的关怀;科研中, 巨峰老师又一丝不苟,认真负责。特别在整篇论文的撰写过程中,从选题、构思 到最终的定稿的每一个环节,都倾注了导师的大量心血。老师严谨的治学态度和 高尚平和的为人风范使我受益匪浅。此外,也十分感谢张凯老师、陈彦龙老师和 张明伟老师在试验和理论研究方面对我提供的指导。 其次,我要感谢我的同学们。感谢郭帅博士、黄鹏博士、李百宜博士和沙子 恒博士在论文写作和力学分析工作上对我提供的指导;感谢王中伟、郭志文、宁 湃和李开源等硕士在数据处理和图片处理等基础方面为我提供的帮助。同时,我 还要感谢我的父母与我的朋友李周义在背后给我提供的默默支持。 在论文撰写的过程中, 参阅了大量的文献资料, 在参考文献中已将作者列出, 但难以保证没有遗漏。在此,向所有的作者表示衷心的感谢,对他们的辛勤劳动 和创造表示由衷的钦佩,他们的研究成果为我开阔了眼见和思路,给予我很大的 启发和帮助。 最后,感谢在百忙之中评审、答辩本论文并提出宝贵意见的各位专家教授。 万方数据 I 摘摘 要要 固体充填采煤技术是煤矿绿色开采的重要技术手段, 通过矸石充填采空区来 控制岩层移动与矿压显现,已在煤矿灾害防控中起到显著作用。矸石充填体在进 入采空区后, 受顶板压力作用所表现的应力应变等宏细观力学行为直接决定着采 场围岩的控制效果, 而如何表征矸石压实过程中的这种应力应变力学行为是煤矿 矸石充填开采压实率快速检测亟待解决的技术问题。基于此,全文综合选取理论 分析、实验室试验与数值模拟等研究手段,对煤矿固体矸石材料压实变形中的力 学行为进行分析, 系统研究了充填矸石在压实过程中的电敏性与力链传递的细观 演化特征。取得以下主要研究成果 (1)利用电镜扫描试验,对固体充填矸石的物化特性开展测试,研究微观 构造对材料压实变形特性的影响。 通过对煤矿矸石充填材料开展侧限压缩条件下 单轴加载试验,研究其应力-压缩量、应力-容重和压实本构关系,分析粒径配比 及饱和条件对固体充填矸石压实力学特性的影响。 (2)从矸石充填材料压实过程中能量消耗方向入手,建立能量方程并得到 应力-应变关系式,从物理意义上证实煤矸石压缩过程中的应力-应变曲线被拟合 成对数形式的正确性;结合公式中孔隙度变量和电导率建立关系,推导得到自然 与饱和状态下煤矿矸石充填材料压缩过程中的力-电耦合模型。 (3)通过对不同配比以及不同状态的矸石试样进行单轴加载过程中的电阻 率测试试验,发现煤矿固体矸石在压缩过程中应力-压缩量-电阻率动态变化具有 一定的同步性; 分析颗粒级配和饱和状态矸石试样单轴压缩条件下对电阻率特性 的影响,电阻率随着配比增加出现升高的现象;考虑含水状态对矸石电阻率的影 响,由于导电特性对水的灵敏性,导致含水状态下矸石试样的电阻率较自然状态 下的阻值降低。 (4)采用颗粒流数值模拟软件,提出利用柔性簇单元建立矸石颗粒流模型 的构建方法,考虑加载速率与饱和状态影响,通过进行单轴压缩数值模拟,分析 结果中的应力应变和破碎方式等方面与实验室试验结果有着良好的对应; 研究模 型内部力链分布和裂隙演化规律, 发现多数力链集中在颗粒较大的颗粒单元附近, 形成“骨架力链”现象,而裂隙也主要产生在颗粒较大的颗粒单元附近。 该论文有图 55 幅,表 10 个,参考文献 99 篇。 关键词关键词固体充填采煤;单轴压缩;电阻率;颗粒流;柔性簇单元 万方数据 II Abstract Solid filling mining technology is an important technical means of green mining in coal mines. It has played a significant role in the prevention and control of coal mine disasters by filling the goaf with gangue to control strata movement and pressure manifestation. After the gangue filling body enters the goaf, the macro and micro mechanical behaviors such as stress and strain, which are affected by roof pressure, directly determine the control effect of surrounding rock. How to characterize the stress and strain mechanical behavior in the process of gangue compaction is a technical problem to be solved urgently in the rapid detection of the compaction rate of coal mine gangue filling mining. Based on this, theoretical analysis, laboratory test and numerical simulation are synthetically selected to analyze the mechanical behavior of coal mine solid gangue material in compaction deation, and the micro-evolution characteristics of electric sensitivity and force chain transmission in the process of filling gangue compaction are systematically studied. The main achievements are as follows 1 The physical and chemical properties of solid filling gangue were tested by scanning electron microscopy SEM, and the effect of its micro-structure on the compaction deation characteristics of the material was studied. Through uniaxial loading test of coal mine gangue filling material under lateral confined compression, the stress-compression quantity, stress-bulk density and compaction constitutive relationship are studied, and the effects of particle size ratio and saturation conditions on the compressive strength characteristics of solid filling gangue are analyzed. 2 Starting from the direction of energy consumption in the compaction process of gangue filling material, the energy equation is established and the stress-strain relationship is obtained. The correctness of fitting the stress-strain curve into logarithmic in the compression process of gangue is verified in physical sense. Based on the relationship between porosity variables and electrical conductivity, the mechanical-electrical coupling model of coal mine gangue filling materials under natural and saturated conditions was deduced. 3 Through the resistivity test of gangue samples with different proportions and different states during uniaxial loading, it is found that the dynamic change of stress-compression-resistivity of coal mine solid gangue during compression has a certain synchronicity; the influence of particle size distribution and saturated state 万方数据 III gangue samples on the resistivity characteristics under uniaxial compression is analyzed, and the resistivity increases with the proportions. Considering the effect of water-containing state on the resistivity of gangue, the resistivity of gangue samples under water-containing state is lower than that under natural state because of the sensitivity of conductivity to water. 4 Using the numerical simulation software of particle flow, a of constructing the particle flow model of Gangue by using flexible cluster element is proposed. Considering the influence of loading rate and saturation state, the numerical simulation of uniaxial compression is carried out. The stress-strain and fracture mode in the analysis results are in good agreement with the experimental results. The distribution of force chain and the evolution law of cracks in the model are studied. It is found that most of the force chains concentrate near the larger particle units, ing a “skeleton force chain“ phenomenon, and cracks mainly occur near the larger particle units. This paper includes 55 figures, 10 tables and 99 references. Keywords Solid Filling Mining; Uniaxial Compression; Resistivity; Particle Flow; Flexible Cluster Element 万方数据 IV 目 录 目 录 摘摘 要要 ........................................................................................................................... I 目目 录录 ........................................................................................................................ IV 图清单图清单 ..................................................................................................................... VIII 表清单表清单 ....................................................................................................................... XII 变量注释表变量注释表 ............................................................................................................. XIII 1 绪论绪论 ........................................................................................................................... 1 1.1 研究背景与研究意义 ............................................................................................. 1 1.2 国内外研究现状 ..................................................................................................... 3 1.3 主要研究内容与技术路线 ................................................................................... 10 2 煤矿矸石充填材料物化及力学特性煤矿矸石充填材料物化及力学特性 ..................................................................... 12 2.1 煤矿矸石充填材料物理化学特性 ....................................................................... 12 2.2 煤矿矸石充填材料压实力学特性 ....................................................................... 14 2.3 本章小结 ............................................................................................................... 22 3 煤矿矸石充填材料压实变形中力煤矿矸石充填材料压实变形中力-电耦合模型电耦合模型 .................................................... 24 3.1 煤矿充填矸石散体介质压实变形力学理论分析 ............................................... 24 3.2 煤矿矸石散体介质电阻率理论模型 ................................................................... 30 3.3 本章小结 ............................................................................................................... 33 4 煤矿矸石充填材料压实变形中的特征量表征煤矿矸石充填材料压实变形中的特征量表征 ..................................................... 34 4.1 电阻率测试原理及装置设计与安装 ................................................................... 34 4.2 煤矿矸石充填材料单轴压缩过程中电阻率特性试验研究 ............................... 37 4.3 四相电极法探测矸石压实过程电阻率试验验证 ............................................... 46 4.4 本章小结 ............................................................................................................... 50 5 煤矿矸石充填材料压实变形中的细观演化特征煤矿矸石充填材料压实变形中的细观演化特征 ................................................. 51 5.1 颗粒流计算原理 ................................................................................................... 51 5.2 煤矿充填矸石颗粒流模型构建 ........................................................................... 53 5.3 模拟结果分析 ....................................................................................................... 58 5.4 本章小结 ............................................................................................................... 71 6 主要结论与展望主要结论与展望 ..................................................................................................... 72 万方数据 V 6.1 主要结论 ............................................................................................................... 72 6.2 展望 ....................................................................................................................... 72 参考文献参考文献 ..................................................................................................................... 74 作者简历作者简历 ..................................................................................................................... 80 学位论文原创性声明学位论文原创性声明 ................................................................................................. 81 学位论文数据集学位论文数据集 ......................................................................................................... 82 万方数据 VI Contents Abstract ........................................................................................................................ II Contents ..................................................................................................................... VI List of Figures ......................................................................................................... VIII List of Tables ............................................................................................................. XII List of Variables...................................................................................................... XIII 1 Introduction ............................................................................................................... 1 1.1 Research Background and Research Significance ................................................... 1 1.2 Present Research Status ........................................................................................... 3 1.3 Main Research Contents and Technical Route ...................................................... 10 2 Physicochemical and Mechanical Properties of Coal Mine Waste Filling Material ....................................................................................................................... 12 2.1 Physicochemical Properties of Coal Mine Waste Filling Material ........................ 12 2.2 Compressive Strength Characteristic of Coal Mine Waste Filling Material .......... 14 2.3 Summary ................................................................................................................ 22 3 Mechano-electric Coupling Model on Compaction Deation of Coal Mine Waste Filling Material ............................................................................................... 24 3.1 Mechanics Theory Analysis of Compaction Deation of Coal Mine Filling Gangue Bulk Media ..................................................................................................... 24 3.2 Theoretical Model of Medium Resistivity of Coal Gangue Bulk .......................... 30 3.3 Summary ................................................................................................................ 33 4 Characterization of Characteristic Scale in Compaction Deation of Coal Mine Waste Filling Material ..................................................................................... 34 4.1 Principle of Resistivity Measurement and Design and Installation of Device ...... 34 4.2 Experimental Study on Resistivity Characteristics of Coal Mine Gangue Filling Material during Uniaxial Compression ........................................................................ 37 4.3 Testing Verification of Resistivity of Four-phase Electrode for Detecting Compaction Process of Gangue ................................................................................... 46 4.4 Summary ................................................................................................................ 50 5 Microscopic Evolution Characteristics of Coal Mine Gangue Filling Material in 万方数据 VII Compaction Deation .......................................................................................... 51 5.1 Principle of Particle Flow Computation ................................................................ 51 5.2 Construction of Particle Flow Model of Coal Mine Filling Gangue ..................... 53 5.3 Numerical Simulation Results and Analysis .......................................................... 58 5.4 Summary ................................................................................................................ 71 6 Main Conclusion and Expectation ........................................................................ 72 6.1 Main Conclusion .................................................................................................... 72 6.2 Prospect .................................................................................................................. 72 References ................................................................................................................... 74 Author’s Resume ........................................................................................................ 80 Declaration of Thesis Originality ............................................................................. 81 Thesi