掘进机典型工况下关键结构动力学特性研究.pdf
学校代码10112 密 级 硕 士 学 位 论 文 (学(学 术术 学学 位)位) 论文题目 掘进机典型工况下关键结构动力学特性研究 英文题目 Research on Dynamic Characteristics of Key Structures under Typical Working Conditions of Roadheader 作者姓名 秦泽文 学 号 2017510036 学 科 机械工程 研究方向 机械现代设计 指导教师 王义亮 教授 合作导师 论文提交日期2020 年 6 月 万方数据 万方数据 学位论文原创性声明 本人郑重声明所呈交的学位论文, 是本人在导师的指导下, 独立进行 研究所取得的成果。 除文中已经注明引用的内容外, 本论文不包含其他个人 或集体已发表或撰写过的科研成果。对本文的研究做出贡献的个人和集体, 均已在文中以明确方式标明。本声明的法律责任由本人承担。 论文作者签名 签字日期 年 月 日 学位论文版权使用授权书 本学位论文作者和指导教师完全了解太原理工大学有关保留、使用学 位论文的规定学校有权保留并向国家有关部门或机构送交学位论文的复 印件和电子版; 允许本学位论文被查阅和借阅; 学校可以将本学位论文的全 部或部分内容编入有关数据库进行检索, 可以采用影印、 缩印或其他复制手 段保存和汇编本学位论文。 本学位论文属于保密 □ 在 年解密后适用本授权书 不保密 论文作者签名 导师签名 签字日期 年 月 日 签字日期 年 月 日 万方数据 万方数据 硕士学术学位、硕士非工程类专业学位 学位论文答辩信息表 论文题目 掘进机典型工况下关键结构动力学特性研究 课题来源* 省科技厅项目 论文答辩日期 2020 年 6 月 11 日 答辩秘书 刘枫彬 学位论文答辩委员会成员 姓名 职称 博导/硕导 工作单位 答辩委员 会主席 常宗旭 教授 硕导 太原理工大学 答辩委员 1 任芳 副教授 硕导 太原理工大学 答辩委员 2 张耀成 副教授 硕导 太原理工大学 *课题来源可填国家重点研发计划项目、国家自然科学基金项目、国家社 科基金项目、教育部人文社科项目、国家其他部委项目、省科技厅项目、省 教育厅项目、企事业单位委托项目、其他 万方数据 万方数据 摘 要 I 摘 要 随着我国煤炭行业的快速发展, 煤炭需求量日益增多, 相应的煤炭开采 量也日益增多,地下开采环境也日益恶劣, 对掘进机的工作效率,安全性, 可靠性也提出了越来越高的要求,而掘进机具备良好的动态特性是保证掘 进机具有以上性能的关键因素。掘进机的振动是引起掘进机故障的主要原 因, 由振动引起的掘进机的机械故障主要有 回转台支撑部的振动疲劳受损; 油缸由于瞬时动压力过大而造成的泄漏;油缸连接销孔由于振动造成孔径 变大,影响连接的稳定性;灯罩由于振动剧烈,经常造成螺丝脱落,灯罩受 损;截割减速箱内齿轮受振动的影响,以及齿轮转速的瞬变, 造成的齿轮点 蚀受损。 本文研究的对象是 EBZ300 纵轴悬臂式掘进机,主要研究截割臂以及 回转台等在掘进机工作过程中起主要承载作用的部件,这些部件的动力学 特性决定了掘进机工作过程中的可靠性以及稳定性。本课题中截齿截割对 象设为硬度较高的岩石,因此在掘进机截割过程中容易产生较大的冲击载 荷,沿着振动传递路径,进而引起掘进机截割部、本体部强烈振动,造成以 上部件疲劳损坏和故障, 进而影响到掘进机的工作效率、 安全性和可靠性。 因此本文主要研究掘进机典型工况条件下,包括横截和钻进工况下的掘进 机关键构件的振动特性以及受力特性。 首先根据企业提供二维图纸在 UG 中建立掘进机整机的三维模型,并 对其进行适当的简化, 然后在Workbench中进行掘进机整机约束模态分析, 得到掘进机整机的主要模态频率以及振型,为后续分析掘进机各关键部件 的振动提供参考依据。 其次,将在 UG 中建立的掘进机截割头以及岩壁的本构模型导入 ANSYS 中,建立截割头和岩壁的有限元模型,然后在 LS_DYNA 中分别进 行横截和钻进工况下掘进机截割头截割岩石仿真,获得截割头所受到的外 部冲击载荷,为后续的掘进机刚柔耦合动力学仿真提供载荷数据。 最后在 ANSYS 中分别建立截割部,以及回转台的模态中性文件,导入 ADAMS 中进行分别进行以截割部为柔性体的掘进机整机刚柔耦合动力学 分析以及以回转台为柔性体的掘进机整机刚柔耦合动力学分析,获得掘进 机各关键部件的振动特性以及受力特性。 仿真结果表明在横截和钻进工况下,掘进机截割部在 12Hz、19Hz、 52Hz 左右发生振动,截割减速箱以及电机箱体所受应力较大,悬臂段所受 万方数据 太原理工大学硕士学位论文 II 应力较小,截割部最大应力集中在截割减速箱与升降油缸连接的销轴位置, 且其最大应力远小于其许用应力,证明截割部各部件结构设计均满足强度 要求。两种工况下,回转台的振动频率集中在 12Hz、19Hz、39Hz 处,且在 两种工况下,回转台最大应力均主要集中在回转台与升降油缸连接的销轴 位置处,回转台最大应力也小于其许用应力,证明其结构设计合理。 本文研究结果为掘进机关键结构减振设计研究及其结构优化改进提供 了理论依据。 关键词关键词掘进机;截割部;回转台;模态分析;动力学分析;振动;应力 万方数据 ABSTRACT III ABSTRACT With the rapid development of Chinas coal industry, the demand for coal is increasing, the corresponding coal mining volume is also increasing, and the underground mining environment is also getting worse. The working efficiency, safety, and reliability of the roadheader are also raised. Requirements, and the boring machine has good dynamic characteristics is the key factor to ensure that the boring machine has the above perance. The vibration of the roadheader is the main reason for the failure of the roadheader,the mechanical failures of the roadheader caused by vibration mainly include the vibration fatigue damage of the supporting part of the turntable; the leakage of the oil cylinder due to excessive transient dynamic pressure; the hole diameter of the connecting pin of the oil cylinder becomes larger due to vibration, which affects the stability of the connection ; Due to the severe vibration of the lampshade, the screws often fall off and the lampshade is damaged; the gears in the cutting gearbox are affected by the vibration and the transient speed of the gear speed, resulting in damage to the gear pitting corrosion. The object of this study is the EBZ300 longitudinal axis cantilever roadheader.It mainly studies the cutting arm and rotary table and other components that play a major role in the process of the roadheader. The dynamic characteristics of these components determine the reliability of the roadheader Sex and stability. In this subject, the cutting object is set to a rock with high hardness, so it is easy to generate a large impact load during the cutting process of the roadheader, along the vibration transmission path, which will cause the cutting part of the roadheader and the main body to vibrate,causing fatigue damage and failure of the above components, which in turn affects the working efficiency, safety and reliability of the roadheader. Therefore, this paper mainly studies the vibration characteristics and stress characteristics of the key components of the roadheader under the typical working conditions of the roadheader, including cross-section and drilling conditions. Firstly, according to the two-dimensional drawings provided by the enterprise, the three-dimensional model of the whole machine of the roadheader is established in UG and simplified appropriately, and then the constraint modal 万方数据 太原理工大学硕士学位论文 IV analysis of the whole machine of the roadheader is carried out in Workbench to obtain the main mode of the whole machine The frequency and vibration mode provide a reference for the subsequent analysis of the vibration of key components of the roadheader. Secondly, the constitutive model of the cutting head and rock wall established in UG is imported into ANSYS to establish the finite element model of the cutting head and rock wall, and then the cross-section and drilling conditions are respectively carried out in LS_DYNA The cutting head of the tunneling machine cuts the rock to obtain the external impact load on the cutting head, and provides load data for the subsequent rigid-flexible coupling dynamics simulation of the roadheader. Finally, the cutting part and the modal neutral file of the turntable are established in ANSYS respectively, and imported into ADAMS to conduct the rigid-flexible coupling dynamic analysis of the machine with the cutting part as the flexible body and the turntable as the flexible The rigid-flexible coupling dynamic analysis of the whole roadheader is used to obtain the vibration characteristics and stress characteristics of each key component of the roadheader. The simulation results show that under the conditions of cross-section and drilling, the cutting section of the roadheader vibrates at about 12 Hz, 19 Hz, and 52 Hz. The stress of the cutting gearbox and the motor box is relatively large, and the stress of the cantilever section is relatively small. The maximum stress of the cutting part is concentrated on the position of the pin connecting the cutting gearbox and the lifting cylinder, and its maximum stress is much smaller than its allowable stress, which proves that the structural design of each part of the cutting part meets the strength requirements. Under two working conditions, the vibration frequency of the turntable is concentrated at 12 Hz, 19 Hz, and 39 Hz, and under the two working conditions, the maximum stress of the turntable is mainly concentrated at the position of the pin connecting the turntable and the lifting cylinder. The maximum stress is also less than its allowable stress, which proves that its structural design is reasonable. The results of this paper provide a theoretical basis for the research on the vibration reduction design of key components of the roadheader and its structural optimization and improvement. 万方数据 ABSTRACT V Key Words Roadheader; Cutting Part; Rotary Mechanism; Modal Analysis; Dynamic Analysis; Vibration; Stress 万方数据 太原理工大学硕士学位论文 VI 万方数据 目 录 VII 目 录 摘 要 ......................................................................................................................................... I ABSTRACT ............................................................................................................................. III 第一章 绪论 ............................................................................................................................ 1 1.1 研究背景及意义 ........................................................................................................... 1 1.2 国内外研究动态 ........................................................................................................... 1 1.2.1 掘进机截割载荷谱分析 ........................................................................................ 1 1.2.2 掘进机模态分析 .................................................................................................... 2 1.2.3 掘进机振动以及受力特性分析 ............................................................................ 3 1.3 论文主要研究内容 ....................................................................................................... 4 1.4 本章小结 ....................................................................................................................... 5 第二章 掘进机整机的三维模型与简化模型 ........................................................................ 7 2.1 引言 ............................................................................................................................... 7 2.2 掘进机主要部件的结构作用与简化模型 ................................................................... 7 2.2.1 简化说明 ................................................................................................................ 7 2.2.2 截割部 .................................................................................................................... 8 2.2.3 本体部 .................................................................................................................. 11 2.2.4 行走部 .................................................................................................................. 12 2.2.5 铲板部 .................................................................................................................. 13 2.2.6 后支承及电控箱 .................................................................................................. 14 2.3 掘进机整机简化模型 ................................................................................................. 15 2.4 本章小结 ..................................................................................................................... 16 第三章 掘进机整机约束模态分析 ...................................................................................... 17 3.1 引言 ............................................................................................................................. 17 3.2 模态分析基本理论 ..................................................................................................... 17 3.3 掘进机整机有限元模型的建立 ................................................................................. 19 3.3.1 导入模型 .............................................................................................................. 19 3.3.2 定义材料数据 ...................................................................................................... 19 3.3.3 接触设置 .............................................................................................................. 19 3.3.4 网格划分 .............................................................................................................. 20 3.3.5 约束定义 .............................................................................................................. 21 3.3.6 模态分析结果 ...................................................................................................... 21 万方数据 太原理工大学硕士学位论文 VIII 3.4 本章小结 ..................................................................................................................... 27 第四章 掘进机典型工况下截割岩石仿真 .......................................................................... 29 4.1 引言 ............................................................................................................................. 29 4.2 截齿受力分析 ............................................................................................................. 29 4.3 典型工况下截割仿真设置 ......................................................................................... 29 4.3.1 截割仿真有限元模型的建立 .............................................................................. 29 4.3.2 接触和边界条件的设置 ...................................................................................... 32 4.3.3 求解设置 .............................................................................................................. 32 4.3.4 结果后处理 .......................................................................................................... 33 4.4 本章小结 ..................................................................................................................... 37 第五章 掘进机截割部刚柔耦合分析 .................................................................................. 39 5.1 引言 ............................................................................................................................. 39 5.2 多柔体系统动力学建模理论 ..................................................................................... 39 5.3 掘进机虚拟样机模型的建立 ..................................................................................... 41 5.3.1 模型导入 .............................................................................................................. 41 5.3.2 定义运动副 .......................................................................................................... 41 5.3.3 参数设置 .............................................................................................................. 43 5.4 掘进机截割部刚柔耦合模型的建立 ......................................................................... 45 5.4.1 柔性体模型的建立 .............................................................................................. 46 5.4.2 模态中性文件的建立 .......................................................................................... 47 5.4.3 柔性体替换刚形体 .............................................................................................. 50 5.5 整机动力学仿真 ......................................................................................................... 51 5.5.1 截割头载荷的添加 .............................................................................................. 51 5.5.2 动力学仿真设置 .................................................................................................. 52 5.6 截割部动力学特性分析 ............................................................................................. 52 5.6.1 截割部各部件模态分析 ...................................................................................... 52 5.6.2 横截工况下截割部各部件振动特性分析 .......................................................... 54 5.6.3 横截工况下截割部各部件受力特性分析 .......................................................... 59 5.6.4 钻进工况下截割部各部件振动特性分析 .......................................................... 61 5.6.5 钻进工况下截割部各部件受力特性分析 .......................................................... 66 5.7 本章小结 ..................................................................................................................... 68 第六章 掘进机回转台刚柔耦合分析 .................................................................................. 71 6.1 引言 ............................................................................................