粗颗粒浮选脱附行为及影响机理研究.pdf
硕士学位论文 粗颗粒浮选脱附行为及影响机理研究 Study on Flotation Detachment Behavior and Influence Mechanism of Coarse Particles 作 者宋兴伟 导 师廖寅飞 副研究员 中国矿业大学 二〇二一年四月 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 万方数据 中图分类号 TD923 学校代码 10290 UDC 密 级 公开 中国矿业大学 硕士学位论文 粗颗粒浮选脱附行为及影响机理研究 Study on Flotation Detachment Behavior and Influence Mechanism of Coarse Particles 作 者 宋兴伟 导 师 廖寅飞 申请学位 工学硕士学位 培养单位 化工学院 学科专业 矿物加工工程 研究方向 粗颗粒矿物浮选 答辩委员会主席 杨建国 评 阅 人 二〇二一年四月 万方数据 致谢致谢 春去秋来,寒暑三载,人生天地之间,若白驹过隙,忽然而已。回想学习与 生活中点点滴滴,惟有感谢,感谢这三年来陪我走过的每一个人,更感谢那些帮 助和指导我的人。 首先特别感谢我的导师廖寅飞副研究员,从最开始的论文选题、试验方案、 试验装置的设计,到最后的论文撰写,老师都给予了巨大的帮助。做人做事做学 问的教书育人理念深入我心,老师渊博的知识,一丝不苟的科研作风,大胆的创 新精神对我产生深远的影响, 从老师您那里学到的知识是我这一生中最宝贵的财 富。在此,对廖寅飞老师致以最真诚的感谢。衷心祝愿老师生活万事如意,事业 蒸蒸日上 感谢马子龙老师,廖寅飞老师在选矿试验现场对我的指导与帮助。纸上得来 终觉浅,绝知此事要躬行,老师长期立足于试验现场与生产实践,丰富的知识技 能, 无时不刻都是我一生追求的榜样。在次感谢老师在试验现场对我的帮助指导 还有包容。 感谢张海军研究员、桂夏辉研究员、邢耀文研究员、王利军教授等在论文开 题之际对我的建议,让我在试验过程以及论文的撰写少走弯路,感谢各位老师的 谆谆教诲,祝愿各位老师工作顺利,生活愉快。 感谢师兄王军超、来庆腾、刘泽晨、杨茂、马隆飞、邱玉良、赵立民,师姐 张凡凡、胡闪闪、朱春云,从最基本的试验仪器操作到为人处世,都对我帮助巨 大。感谢师弟师妹杨哲、任厚瑞、杨奥生、陈罗建,感谢你们在我试验过程中的 出手相助,每次组会我们都一块学习,一块进步,愿我们都有更好的明天。感谢 同窗郝晓栋硕士从论文的选题到试验到最后的论文撰写,一路上的指导与陪伴, 让我的研究生期间多姿多彩。 再次感谢课题组的所有老师、同学,三年的求学生涯因为有你们的陪伴而丰 富多彩,在此祝愿所有老师,同学前程似锦。 鸭有反哺之义,羊知跪乳之恩。近二十载的读书生涯接近尾声,求学期间未 能常伴父母身边深感愧疚,是你们用辛勤的汗水养育了我,让我健康成长,给我 一次次求学的机会,你们是我求学路上最坚强的后盾。一声祝福,二老安好。 感恩母校, 感谢师恩; 敬岁月之沧桑, 青春之无悔; 愿韶华不负, 有梦为马。 最后,向百忙之中评审本论文并提出宝贵意见的各位教授、专家致以敬意和 感谢,由于作者水平有限,文中难免出现错误与不当之处,敬请批评指正。 万方数据 I 摘摘 要要 我国矿产资源丰富,但随着经济的发展,对于资源的需求日益增加,同时我 国矿产资源“贫杂”的问题也愈发凸显。 粗颗粒浮选一方面可以预先抛除部分含杂 矿物较多的脉石,减少对后续作业影响,提高处理量;另一方面可以减少碎磨作 业、降低电能消耗,这对于尾矿管理和重复利用也有一定积极的作用。本论文采 用玻璃微珠作为模型矿物进行粗颗粒浮选脱附行为研究,探究了不同起泡剂、不 同颗粒粒度和疏水性对气泡-颗粒之间的准静态脱附过程、气/液相界面的动态脱 附概率以及粗颗粒浮选试验回收率的影响, 为实现粗颗粒高效浮选提供理论支撑。 采用0.4-0.6mm、0.5-1.0mm、1.0-1.5mm、1.5-2.0mm、2.0-2.5mm 5 个 粒级的玻璃微珠,通过甲基化反应进行疏水改性,结果表明,随着三甲基氯硅烷 用量的增加, 玻璃微珠的表面疏水性逐渐变大。 在相同的药剂作用下, 粒度越大, 颗粒本身的相对表面积相对较小,得到的疏水接触角更大。 起泡剂性质测试结果 表明,起泡剂表面张力大小顺序为聚丙二醇仲辛醇聚乙二醇MIBC正戊醇, 同时粘度大小关系为聚丙二醇聚乙二醇仲辛醇MIBC正戊醇, 聚丙二醇具有 最大的粘度,为 347.15mPas。 采用气泡-颗粒脱附试验装置进行气泡-颗粒准静态脱附过程试验研究,探索 了不同起泡剂、不同颗粒粒度及疏水接触角下气泡-颗粒准静态过程的接触角、 脱附力演变规律, 结果表明 气泡-颗粒准静态脱附过程分为气泡拉伸、 气泡滑动 和气泡颈缩三个阶段, 同时动态接触角的变化也分为三个明显的阶段,与脱附过 程的三个阶段吻合度较高。在表面张力较大时,脱附力的大小受表面张力影响较 小, 适当降低溶液表面张力, 能够在一定程度上增加气泡-颗粒之间的脱附力, 但 在较低的表面张力下,气泡-颗粒发生脱附所需要的脱附力较小。随着颗粒粒度 的增加,气泡-颗粒发生脱附时界面处能够得到更大的接触面积以及更长的三相 接触线长度,气泡与颗粒之间的脱附力增加。颗粒疏水接触角是影响气泡-颗粒 之间脱附的核心因素,随着颗粒疏水性的增加,脱附力明显变大。根据经典模型 对气泡-颗粒进行受力分析,影响脱附力的大小因素有表面张力、三相接触线长 度和接触角,这与试验得到的结论相一致。 通过气泡-颗粒聚集体动态升浮观测系统,研究了起泡剂存在下单一气泡和 气泡-颗粒聚集体在溶液中的上升行为,并且进一步研究了起泡剂、颗粒粒度和 颗粒疏水接触角对气/液相界面处颗粒发生脱附概率的影响。研究结果表明,气 泡-颗粒聚集体在溶液中运动的稳定性要明显高于单气泡存在的情况。气泡尺寸 的大小随着表面张力的减小而减小, 气泡的尺寸大小顺序为 水正戊醇MIBC 万方数据 II 聚乙二醇仲辛醇聚丙二醇。气泡生成尺寸和溶液表面张力大小对气泡在溶液 中上升速度具有一定的影响, 气泡上升速度大小关系为 水正戊醇MIBC聚乙 二醇仲辛醇聚丙二醇。气泡-颗粒聚集体在仲辛醇溶液的气/液相界面处,脱附 概率最低,为 9,而在聚丙二醇溶液的气/液相界面处脱附概率最高,为 20, 颗粒的脱附概率大小为聚丙二醇水正戊醇聚乙二醇MIBC仲辛醇。起泡剂 能够在一定程度上减小颗粒的脱附概率,这主要是由气泡在到达气/液相界面处 时的速度以及气泡-颗粒之间的脱附力的大小来决定。气泡-颗粒之间的脱附力大 小同样是由颗粒自身疏水性以及粒度大小来决定, 脱附力大小能够显著影响气泡 -颗粒聚集体在气/液相界面处的脱附概率。粗颗粒从气泡的表面发生脱附的概率 要明显高于粒度较小的颗粒。粗颗粒具有较大的惯性,在气泡到达气/液相界面 时,颗粒在气泡的表面滑动的位移变大,从而导致脱附的发生。颗粒疏水性对气 /液相界面颗粒脱附概率的影响较大,随着颗粒疏水性的提高,脱附概率逐渐降 低。 疏水性越高的颗粒有更大的脱附力, 气泡-颗粒聚集体的稳定性较强, 颗粒发 生脱附的概率较低。 粗颗粒浮选试验结果表明, 粗颗粒回收率大小随着起泡剂用量的增加呈现出 先增加后减小的趋势, 当起泡剂用量为 300g/t 时, 浮选指标较好, 仲辛醇和 MIBC 两种起泡剂要优于其他药剂,主要表现为泡沫层厚度大,存在时间长。颗粒自身 的疏水性仍然是决定浮选指标的关键因素, 疏水接触角越大的颗粒能够得到更高 的回收率。 论文有图 67 幅,表 6 个,参考文献 97 篇。 关键词关键词浮选;脱附;粗颗粒;矿物分选 万方数据 III Abstract China has abundant mineral resources. With the development of the economy, the demand for resources is increasing. What’s more, characteristics like ‘poor, miscellaneous’ of the mineral resources in China is becoming more and more prominent. On the one hand, coarse particle flotation can remove part of gangue in advance, and reduce the influence of gangue on subsequent operations and improve the processing capacity. On the other hand, it can reduce grinding operations and power consumption, which has a certain positive effect on tailings management and reuse. In this paper, glass beads were used as model minerals to study the detachment behavior of coarse particle flotation, and the effects of different frother, particle size and hydrophobicity on the quasi-static detachment process between bubbles and particles, the dynamic detachment probability of gas/liquid interface and the recovery rate of coarse particle flotation were explored, which provided theoretical support for the realization of high- efficiency flotation of coarse particles. The surface hydrophobicity of the glass beads with fraction size of 0.4-0.6 mm, 0.5-1.0 mm, 1.0-1.5 mm, 1.5-2.0 mm, 2.0-2.5 mm were modified by methylation reaction. The larger the particle size, the smaller the relative surface area of the particles, and the larger the hydrophobic contact angle. The test results of frother properties showed that the order of surface tension of frothert is polypropylene glycol sec octanol polyethylene glycol MIBC n-pentanol. And the relationship of viscosity is polypropylene glycol polyethylene glycol sec octanol MIBC n-pentanol. The maximum viscosity of polypropylene glycol is 347.15 mPa s. The bubble particle quasi-static detachment process was studied by using bubble particle detachment test device. The evolution of contact angle and detachment force of bubble particle quasi-static process under different forther, particle size and hydrophobic contact angle was explored. The results showed that the process of bubble particle quasi-static detachment can be divided into three stages bubble stretching, bubble sliding and bubble necking. Meanwhile, the change of dynamic contact angle can also be divided into three obvious stages, which are in good agreement with the three stages of detachment process. Frothers have certain effects on the detachment force. When the surface tension is large, the detachment force is less affected by the surface tension. The detachment force between bubbles and particles can be increased to a certain extent by appropriately reducing the surface tension of the solution. But the 万方数据 IV stability between bubble particles was poor at low surface tension. With the increase of particle size, the detachment force between bubble particles increased, which is mainly because the larger particle size can obtain a larger contact area and a longer three-phase contact line length. The hydrophobic contact angle of particles is still an important factor to determine the detachment between particles. With the increase of hydrophobicity of particles, the detachment force increased obviously. According to the classical model, the influence factors of detachment force are surface tension, contact line length, and contact angle, which is consistent with the previous experimental conclusion. In the presence of frother, the rising state of single bubble and bubble-particle aggregate in solution was studied by the bubble-particle aggregate dynamic rising and floating observation system. And the influence of frothers, particle size fractions, and hydrophobic contact angles on the probability of particle detachment at the gas-liquid interface was further studied. The results show that the rising stability of aggregates in the solution is higher than that in the case of the single bubble. The order of bubble size is n-pentanol MIBC polyethylene glycol sec octanol polypropylene glycol. The bubble size and surface tension have a great influence on the bubble rising speed in the solution. The bubble rising speed is no agent n-pentanol MIBC polyethylene glycol sec octanol polypropylene glycol. At the gas/liquid interface, the detachment probability of particles using sec octanol solution is the lowest, which is 9, and that using polypropylene glycol solution is the highest, which is 20. The addition of frother can reduce the detachment probability of particles to a certain extent, which is mainly determined by the velocity of bubbles when they reach the interface and the size of detachment force between bubbles. The detachment force between bubbles and particles is also determined by the hydrophobicity of particles themselves and the size of particles. The detachment force can significantly affect the detachment probability of bubble-particle aggregates at the gas-liquid interface The probability of detachment of coarse particles from the surface of the bubble is obviously higher than that of fine particles. Coarse particles have large inertia, and when the bubbles reach the gas-liquid interface, the sliding displacement of the particles on the surface of the bubbles becomes larger, which leads to detachment. The hydrophobicity of the particle itself has a great influence on detachment probability. With the increase of hydrophobicity, the detachment probability decreased gradually. With the hydrophobicity of particles 万方数据 V increasing, the detachment force increased, and the stability between the bubble and particles become stronger, and the probability of particle detachment become lower. The results of the coarse particle flotation test showed that the recovery of the coarse particle increased first and then decreased with the increase of frother dosage. When the frother dosage is 300g/t, the flotation recovery is high. The two frothers, namely octanol and MIBC, obtained better flotation results than other agents, which are mainly attributed to the high foam layer thickness and long existence time. The hydrophobicity of particles itself is still the key factor to determine the results of flotation. The higher the hydrophobic contact angle of particles, the higher the recovery rate can be obtained. There are 67 pictures, 6 tables and 97 references in this paper. Keywords flotation; detachment; coarse particles; mineral separation 万方数据 VI 目目 录录 摘要摘要 ............................................................................................................................... I 目录目录 .............................................................................................................................VI 图清单图清单 .......................................................................................................................... X 表清单表清单 ...................................................................................................................... XIV 变量注释表变量注释表 ............................................................................................................... XV 1 绪论绪论 ........................................................................................................................... 1 1.1 研究背景及课题的提出1 1.2 文献综述3 1.3 研究内容19 2 起泡剂性质起泡剂性质与玻璃微珠疏水改性研究与玻璃微珠疏水改性研究..23 2.1 试验样品以及性质分析23 2.2 试验装置与药剂24 2.3 试验研究方法26 2.4 玻璃微珠表面疏水改性试验28 2.5 起泡剂的性质以及溶液表面或张力测试32 2.6 本章小结33 3 气泡气泡-颗粒准静态脱附过程的力学性质颗粒准静态脱附过程的力学性质35 3.1 试验装置与方法35 3.2 气泡-颗粒脱附行为研究36 3.3 气泡-颗粒脱附过程的力学性质研究38 3.4 气泡-颗粒脱附过程受力分析47 3.5 本章小结48 4 气泡气泡-颗粒聚集体在气颗粒聚集体在气/液相界面的动态脱附行为液相界面的动态脱附行为...51 4.1 试验装置与方法51 4.2 单一气泡性质和升浮运动特征56 4.3 气泡-颗粒聚集体在气/液相界面的动态脱附行为59 4.4 本章小结66 5 粗颗粒浮选粗颗粒浮选试试验研究验研究..68 5.1 试验装置与方法68 万方数据 VII 5.2 浮选试验结果69 5.3 本章小结72 6 结论结论与展望与展望..73 6.1 主要结论73 6.2 主要创新点74 6.3 展望75 参考文献参考文献..76 作者简历作者简历..82 学位论文原创性声明学位论文原创性声明..83 学位论文数据集学位论文数据集..84 万方数据 VIII Contents AbstractIII ContentsVIII List of FiguresX List of TablesXIV List of VariablesXV 1 Introduction1 1.1 Research Background and Topic Proposed ..1 1.2 Literature Review .3 1.3 Research Content 19 2 Properties of Frother and Hydrophobic Modification of Glass Beads23 2.1 Test Samples and Property Analysis23 2.2 Test Apparatus and Agents 24 2.3 Experimental Research 26 2.4 Experiment on Surface Hydrophobic Modification of Glass Beads 28 2.5 Properties of Frother and Surface Tension Test of Solution 32 2.6 Summary 33 3 Mechanical Properties of Quasi-static Bubble-particle Detachment Process 35 3.1 Test Apparatus and 35 3.2 Study on the Detachment Behaviour of Bubble-particles 36 3.3 Effect of Frother on the Bubble-particle Detachment Process38 3.4 Force Analysis of Bubble - particle Detachment Process 47 3.5 Summary 48 4 Dynamic Detachment Behavior of Bubble-particle Aggregates at the Air/Liquid Interface51 4.1 Test Apparatus and 51 4.2 Properties of Single Bubble and Characteristics of Lifting and Floating Motion 56 万方数据 IX 4.3 Dynamic Detachment Behavior of Bubble-particle Aggregates at the Air/Liquid Interface 59 4.4 Summary 66 5 Experimental Study on Flotation of Coarse Particles 68 5.1 Test Apparatus and s 68 5.2 Flotation Test Results 68 5.3 Summary 72 6 Conclusion and Prospects .73 6.1 Conclusion 73 6.2 Main Innovation Points 74 6.3 Prospects 75 References.76 Author’s Resume.82 万方数据 X 图清单图清单 图序号 图名称 页码 图 1-1 赤铁矿浮选速率系数与粒度关系 3 Figure 1-1 Relationship between hematite flotation rate coefficient and particle size 3 图 1-2 试验装置结构示意图 5 Figure 1-2 Schematic diagram of the test device structure 5 图 1-3 实验室浮选柱装置 5 Figure 1-3 laboratory flotation column unit 5