采煤机滚筒螺旋叶片磨损问题离散元仿真及装煤性能优化.pdf
全日制硕士学位论文全日制硕士学位论文 采煤机滚筒螺旋叶片磨损问题离散元仿真及装煤 性能优化 Discrete Element Simulation of Spiral Blade Wear of Shearer Drum and Optimization of Coal Loading Perance 作者姓名 陈 洋 导师姓名 赵丽娟(教授) 学科专业 机械工程 研究方向 机械电子工程 完成日期 2020 年 08 月 11 日 辽宁工程技术大学 Liaoning Technical University 万方数据 采 煤 机 滚 筒 螺 旋 叶 片 磨 损 问 题 离 散 元 仿 真 及 装 煤 性 能 优 化 陈 洋 辽 宁 工 程 技 术 大 学 万方数据 关于学位论文使用授权的说明关于学位论文使用授权的说明 本学位论文作者及指导教师完全了解 辽宁工程技术大学辽宁工程技术大学 有关保留、使 用学位论文的规定,同意 辽宁工程技术大学辽宁工程技术大学 保留并向国家有关部门或机构 送交论文的复印件和磁盘, 允许论文被查阅和借阅, 学校可以将学位论文的全 部或部分内容编入有关数据库进行检索, 可以采用影印、 缩印或扫描等复制手 段保存、汇编本学位论文。 保密的学位论文在解密后应遵守此协议。 学位论文作者签名____________ 导师签名_____________ 年 月 日 年 月 日 万方数据 8202013 中图分类号 TD421 学校代码 10147 UDC 621 密 级 公 开 辽宁工程技术大学 全日制硕士学位论文全日制硕士学位论文 采煤机滚筒螺旋叶片磨损问题离散元仿真及装煤 性能优化 Discrete Element Simulation of Spiral Blade Wear of Shearer Drum and Optimization of Coal Loading Perance 作者姓名 陈洋 学 号 471720026 导师姓名 赵丽娟(教授) 副导师姓名 申请学位 工学硕士 培养单位 机械工程学院 学科专业 机械工程 研究方向 机械电子工程 二○二○年七月 万方数据 致致 谢谢 不知不觉中,工大时光又度过了三年,没有了本科多姿多彩的生活状态,而是加深了 对学术的研究和自己内心的沉淀。三年光阴,对自己的历练总是坎坎坷坷,成长过程离不 开太多人的关心和帮助。 对我影响最深的人,当属我的恩师赵丽娟教授。老师在工作上的激情和生活中的乐观 态度一直感染着我,不仅要做好学术研究,也要在生活中去丰富自己,对所有走过的路和 即将要走的路都保持积极的心态。老师在学术研究上的耐心指导和生活上的细心关照,我 将永远铭记在心。在这里由衷的感谢我可敬的赵老师。 另外,家人对学业的支持,保证所有日常需求,使我在校园内能够更踏实的学习和交 往。父母不计回报的付出,也是督促自己不断努力的动力,并时刻提醒自己要怀有感恩之 心,回报家庭,回报社会。 实验室的兄弟姐妹们,也是我需要感谢的对象。三年来,在学术上相互商讨研究,生 活中相伴而行,运动娱乐,扯皮嬉戏,青春时光总是显得那么单纯而又充满激情。学生时 代的你们永生难忘。 最后,对参加本人学位论文答辩和评审的专家表示衷心的感谢对于论文中的不足, 还望专家批评指正。 万方数据 I 摘摘 要要 装煤是采煤机滚筒螺旋叶片的主要功能,叶片磨损失效不易修复且更换成本较高,会 降低采煤机的工作效率。本文展开对螺旋叶片磨损的分析研究,经优化保证叶片装煤及滚 筒截割性能的前提下确保叶片磨损的最小化,综合提升滚筒的生产效率并延长滚筒的使用 寿命。根据叶片装煤性能和滚筒截割性能的多目标优化,提出滚筒应对含不同夹矸煤层自 适应调速截割策略,对滚筒叶片螺旋升角进行分析和优化,进一步提升滚筒工作效率。 以 MG2 55/250-BW 型薄煤层采煤机滚筒螺旋叶片为研究对象,以兖矿集团杨村矿 17 层煤的赋存条件设置煤壁模型相关参数,以 EDEM 中的 Hertz-Mindlin with Archard Wear 模型虚拟煤岩体与滚筒之间的碰撞摩擦,通过三维建模软件 PROE 与离散元数值模拟软件 EDEM 耦合仿真,分别建立不同牵引速度、滚筒转速和叶片螺旋升角的滚筒与不同煤岩坚 固性系数的煤壁耦合, 得到滚筒叶片的磨损位置、 载荷变动及不同工况下的磨损变化规律。 结果表明叶片尾端区域磨损最突出,叶片边缘和齿座根部也较为严重。叶片磨损随牵引 速度、螺旋升角和煤岩坚固性系数的增大而增大,随滚筒转速的增大而减小。通过正交试 验,在牵引速度、滚筒转速、叶片螺旋升角和煤岩坚固性系数四个影响因素中,分析得出 对叶片磨损影响程度由大到小分别是滚筒转速、煤岩坚固性系数、牵引速度、叶片螺旋升 角。结合实际工况分析,综合考虑采煤机的装煤率、生产率、块煤率、截割比能耗及叶片 磨损五个性能指标,构造多目标优化模型,保障滚筒的工作性能,降低叶片的磨损,求解 出最优的滚筒转速和牵引速度。即当煤岩坚固性系数为 3.5,滚筒转速为 80.65 r/min,牵引 速度为 4.23 m/min,叶片升角为 11.56 时装煤率为 43.29,生产率为 214.1149 t/h,最大切 削面积为 1217.0 mm2,截割比能耗为 0.8612 kW h/m3,滚筒截割 10 s 时的叶片总磨损深度 降低为 0.25416 mm。 为提升滚筒的工作性能,设计了基于多目标优化的记忆滚筒转速和牵引速度的采煤机 自适应截割策略。针对四种含夹矸煤层,运用遗传算法求解出滚筒转速和牵引速度的最佳 匹配值。自适应截割根据定子电流判断煤层硬度,以最优滚筒转速和牵引速度为数据库记 忆,通过自适应修正实现采煤机的自适应开采。根据叶片螺旋升角对装煤及滚筒截割性能 的影响, 对滚筒叶片螺旋升角进行优化, 即将叶片升角设计为 10 16 的变螺旋升角, 以顺 应煤流方向提升叶片的输煤空间,经过优化前后的数据对比,发现滚筒截割 10 s 时的叶片 总磨损深度降低 0.02317 mm,滚筒的装煤率提升 1.3,生产率保持不变,最大切削面积 增大 68.94 mm2,截割比能耗降低 0.011 kW h/m3。 该论文有图 57 幅,表 27 个,参考文献 77 篇。 关键词关键词含夹矸煤层;滚筒叶片;磨损;多目标优化;自适应截割;升角优化 万方数据 II Abstract Coal loading is the main function of the spiral blade of the shearer drum. The blade wear failure is not easy to repair and the replacement cost is high, which will reduce the working efficiency of the shearer. In this paper, the analysis and research on the wear of spiral blades are carried out. After optimization to ensure the blade coal loading and drum cutting perance, the blade wear is minimized, and the production efficiency of the drum is comprehensively improved and the service life of the drum is extended. According to the multi-objective optimization of the blade coal charging perance and the drum cutting perance, the drum is proposed to respond to the coal seam with different gangues with adaptive speed regulation and cutting strategies, and the spiral angle of the drum blades is analyzed and optimized to further improve the working efficiency of the drum. Taking the spiral blade of the MG2 55/250-BW thin seam shearer drum as the research object, setting the relevant parameters of the coal wall model based on the occurrence conditions of the 17-layer coal in Yangcun Mine of Yankuang Group, and using the Hertz-Mindlin with EDEM The collision and friction between the virtual coal and rock mass of Archard Wear model and the drum are simulated by the coupling of the three-dimensional modeling software PROE and the discrete element numerical simulation software EDEM, and the drums and different coals with different traction speed, drum speed and blade helix angle are established respectively. The coal wall coupling of the firmness coefficient obtains the wear position of the drum blade, the load change and the wear change law under different working conditions. The results showed that the wear at the end of the blade was the most prominent, and the blade edge and tooth seat root were also more serious. Blade wear increases with the increase of traction speed, helix angle and coal rock firmness coefficient, and decreases with the increase of drum speed. Through orthogonal experiments, among the four influencing factors of traction speed, drum rotation speed, blade helix angle and coal rock solidity coefficient, the analysis shows that the impact on blade wear from large to small is drum rotation speed and coal rock solidity. Coefficient, traction speed, blade helix angle. Combining the analysis of actual working conditions, comprehensively considering the coal loading rate, productivity, lump coal rate, cutting specific energy consumption and blade wear of the shearer, a multi-objective optimization model is constructed to ensure the working perance of the drum and reduce the blade Wear, solve the optimal drum speed and traction speed. That is, when the coal rock solidity coefficient is 3.5, the drum speed is 80.65 r/min, the traction speed is 4.23 m/min, the blade lift angle is 11.56 , the coal rate is 43.29, the productivity is 214.1149 t/h, and the maximum cutting area is 1217.0 mm2, the cutting specific energy consumption is 0.8612 万方数据 III kW h/m3, and the total blade wear depth is reduced to 0.25416 mm when the drum is cutting for 10 s. In order to improve the working perance of the drum, a shearer adaptive cutting strategy based on multi-objective optimization of memory drum speed and traction speed is designed. Aiming at four coal seams containing gangue, genetic algorithm is used to find the best matching value of drum speed and traction speed. The self-adaptive cutting judges the hardness of the coal seam according to the stator current, takes the optimal drum speed and traction speed as the database memory, and realizes the self-adaptive mining of the shearer through adaptive correction. According to the influence of the blade helix angle on coal loading and drum cutting perance, the helix angle of the drum blade is optimized, that is, the blade angle is designed to be a variable helix angle of 10 16 to con to the direction of coal flow. After comparing the data before and after optimization for the coal conveying space, it is found that the total blade wear depth when the drum is cut for 10 s is reduced by 0.02317 mm, the coal loading rate of the drum is increased by 1.3, the productivity remains unchanged, and the maximum cutting area is increased by 68.94 mm2. Cutting specific energy consumption is reduced by 0.011 kW h/m3. Keywords coal seam with gangue; drum blades; wear; multi-objective optimization; adaptive cutting; Angle rise optimization 万方数据 IV 目目 录录 摘摘 要要 .......................................................................................................................................... I I 目目 录录 ........................................................................................................................................ IVIV 图清单图清单 ................................................................................................................................. . VIIIVIII 表清单表清单 ...................................................................................................................................... XIXI 变量注释表变量注释表 .......................................................................................................................... XIIIXIII 1 1 绪论绪论 ........................................................................................................................................ 1 1 1.1 课题来源和选题背景 ...................................................... 1 1.2 螺旋滚筒磨损问题研究现状 ................................................ 1 1.3 EDEM 数值模拟的研究现状 ................................................. 3 1.4 采煤机自适应设计研究现状 ................................................ 4 1.5 螺旋滚筒优化设计研究现状 ................................................ 4 1.6 论文的主要研究内容及意义 ................................................ 5 2 2 螺旋滚筒截割理论螺旋滚筒截割理论及磨损理论基础及磨损理论基础 .................................................................................... 7 7 2.1 煤岩体的相关特性 ........................................................ 7 2.2 滚筒叶片的受力分析 ...................................................... 8 2.3 螺旋滚筒磨损的相关理论 ................................................. 10 2.4 磨损接触模型 ........................................................... 11 2.5 本章小结 ............................................................... 14 3 3 基于离散元法的滚筒磨损仿真模型构建基于离散元法的滚筒磨损仿真模型构建 .......................................................................... 1515 3.1 采煤机螺旋滚筒及落煤空间三维模型构建 ................................... 15 3.2 离散元指定空间落煤及滚筒运动学仿真 ..................................... 20 3.3 本章小结 ............................................................... 27 4 4 叶片磨损仿真结果及影响因素分析叶片磨损仿真结果及影响因素分析 .................................................................................. 2828 4.1 叶片磨损仿真结果分析 ................................................... 28 4.2 影响叶片磨损的因素分析 ................................................. 34 4.3 多因素综合分析滚筒叶片的磨损 ........................................... 40 4.4 本章小结 ............................................................... 42 5 5 采煤机采煤机滚筒滚筒工作工作性能性能多目标优化及自适应多目标优化及自适应调速调速控制控制研究研究 ................................................ 4343 5.1 滚筒工作性能多目标最优方案确定 ......................................... 43 万方数据 V 5.2 滚筒运动的约束 ......................................................... 46 5.3 滚筒工作性能的综合评价 ................................................. 47 5.4 采煤机截割自适应控制设计 ............................................... 48 5.5 本章小结 ............................................................... 53 6 6 滚筒叶片滚筒叶片螺旋螺旋升角优化升角优化 ........................................................................................................ 5454 6.1 滚筒叶片螺旋升角优化方案 ............................................... 54 6.2 优化叶片升角的螺旋滚筒建模............................................. 55 6.3 优化后滚筒的仿真分析 ................................................... 59 6.4 本章总结 ............................................................... 61 7 7 结论与展望结论与展望 .......................................................................................................................... 6262 7.1 结论 ................................................................... 62 7.2 展望 ................................................................... 63 参考文献参考文献 ................................................................................................................................. . 6464 作者简历作者简历 ................................................................................................................................. . 6868 学位论文原创性声明学位论文原创性声明 .............................................................................................................. 6969 学位论文数据集学位论文数据集 ...................................................................................................................... 7070 万方数据 VI Contents Abstract .......................................................................................................................................... I I Contents ........................................................................................................................................ IVIV List Of Figures ......................................................................................................................... VIIIVIII List Of Tables ............................................................................................................................... XIXI List Of Variables ...................................................................................................................... XIIIXIII 1 Introduction ................................................................................................................................ 1 1.1 The Source and Background of the Topic ................................................................................. 1 1.2 Research Status of Spiral Drum Wear ....................................................................................... 1 1.3 Research Status of EDEM Numerical Simulation .................................................................... 3 1.4 Research Status of Adaptive Design of Shearer ........................................................................ 4 1.5 Research Status of Optimization Design of Spiral Drum ......................................................... 4 1.6 The Main Research Content and Significance of the Paper ...................................................... 5 2 Spiral Drum Cutting Theory and Foundation of Wear Theory ............................................. 7 2.1 Relevant Characteristics of Coal and Rock Mass ..................................................................... 7 2.2 Force Analysis of Roller Blade ................................................................................................. 8 2.3 Relevant Theory of Spiral Roller Wear ................................................................................... 10 2.4 Wear Contact Model ................................................................................................................ 11 2.5 Chapter Summary .................................................................................................................... 14 3 Construction of Drum Wear Simulation Model Based on Discrete Element ....... 15 3.1 Construction of 3d Model of Shearer Spiral Drum and Coal Falling Space ........................... 15 3.2 Simulation of Coal Falling and Roller Motion in The Specified Space of Discrete Element . 20 3.3 Chapter Summary .................................................................................................................... 27 4 Analysis of Blade Wear Simulation Results and Analysis of Influencing Factors ............. 28 4.1 Analysis of Blade Wear Simulation Results ............................................................................ 28 4.2 Analysis of Factors Affecting Blade Wear .