浅埋煤层长壁开采顶板动态结构研究.pdf
论文题目 浅埋煤层长壁开采顶板动态结构研究 专 业采矿工程 博 士 生张 沛 (签名) 指导教师 黄庆享 (签名) 摘 要 榆神府矿区是 21 世纪初我国最大的现代化能源基地,研究典型浅埋煤层大采高和 近浅埋煤层工作面的矿压显现特征,掌握浅埋煤层矿压显现规律和顶板来压机理,建立 浅埋煤层长壁开采顶板动态结构,对浅埋工作面的科学开采具有重要指导意义。 综合运用现场实测、理论分析、物理模拟和数值模拟方法就浅埋煤层动态顶板结构 理论进行了深入研究。通过现场实测揭示了浅埋煤层采场矿压显现的动态特性及其规 律。通过物理模拟实验,得出典型浅埋煤层厚沙土层采动“拱状” 、 “拱梁”和“弧形岩 柱”破坏特征。建立了厚沙土层“拱状”破坏力学模型,分别确定了典型浅埋煤层初次 来压、 周期来压的载荷传递因子, 并分析了其影响因素和变化规律。 引入载荷传递因子, 得出了典型浅埋煤层初次来压和周期来压支护阻力的计算公式,并通过实例验证了计算 公式的可靠性。 针对榆神府煤田覆岩黏土层构成,开发了塑性相似材料及模拟技术。通过物理模拟 实验,掌握了近浅埋煤层主亚双关键层顶板结构的破坏特征及载荷传递的大小周期来压 规律,揭示了近浅埋煤层采场覆岩“三带”特征及采动裂隙发育规律,建立了弯曲下沉 带的“拱梁”结构模型。通过数值模拟,得出了不同采高的采场覆岩应力拱的演化规律。 建立了近浅埋煤层裂隙带主亚双关键层结构模型,研究了其相互作用关系,给出了主关 键层破断对亚关键层的动态载荷传递,提出了确定近浅埋煤层来压歩距的计算方法,揭 示了近浅埋煤层大小周期来压现象的机理。最后给出了基于亚关键层结构可能形成“砌 体梁”和“台阶岩梁”动态结构及其采场支架合理工作阻力的确定方法。 研究对榆神府等浅埋煤层矿区顶板控制和支架选型具有指导意义和实践意义,同时 对丰富岩层控制的关键层理论具有理论意义。 关 键 词浅埋煤层;近浅埋煤层;长壁开采;顶板动态结构 研究类型应用研究 Subject Research on Dynamic Roof Structure in Shallow Seam Longwall Mining Specialty Mining Engineering Name Zhang Pei ((Signature)) InstructorHuang Qingxiang ((Signature)) ABSTRACT Yushenfu Mining Area is the largest modern energy base of China in the beginning of 21st century .It is necessary to study the ground behavior feature of tytpical shallow seem with big minning height and the nearly shallow seam.The research has great guide meaning to the scientific mining of shallow seam working face. Dynamic roof structure in shallow seam longwall mining was further studied by field test, theoretical analysis,numerical simulation,and physical simulation.By field test,dynamic special law of ground behavior in shallow seam was revealed.The mining “arc”, “arc beam” and “arc pilliar” failure structure of thick sandy layer in typical shallow seam was obtained by physical simulation. The dynamic “arc” failure and develop law and failure mechanism of overburden rock were disclosed. The “arc” failure model was set up and the equation was got, furthermore, the load transmiting rock and time factors in the first and period weighting in typical shallow seam were determined and the effect factors and changing law were further studied. The support resistance ula of first and period weighting in typical shallow seam were given and the reliability was verified by instances. Against the roof of bedrock and clay in Yushenfu coal mine,the plastic and brittle simulation model technique and ratio were developed. By simulation model test, the failure features of main and sub-key strta tructure were controled,meanwhile,the big and small period weighting load transmiting law was grasped. The “three zones” of overburden rock in shallow seam was studied and the mining cracks were classified.The downlink crack development mechanism was revealed by the “arc beam” model.By numerical simulation, the development law of stress arc in overburden rock of nearly shallow seam was obtained. The key and sub-key strata structure model was set up and the mutural effection relationship was studied. The criterion of key strata effecting the sub-key strata and the calculation of weighting distance were given.The big and small weighting mechanism was revealed. The support resistance ula in nearly shallow seam were given under the “masonry beams” and the “step beams” of sub-key stata. Research has guiding significance to the roof control and stent selection of Yushenfu shallow seam coal mines, in the mean time, which has theoretical significance to rich the key strata theory in ground control. Key wordsshallow seam nearly shallow seam longwall mining dynamic roof structure Thesis Application Research 目 录 I 目 录 1 绪论 ...........................................................................................................................1 1.1 论文选题背景及意义.........................................................................................1 1.1.1 选题背景 ....................................................................................................1 1.1.2 问题的提出及意义.....................................................................................2 1.2 论文研究领域国内外的研究动态及发展趋势...................................................4 1.2.1 采场岩层控制理论及其发展......................................................................4 1.2.2 浅埋煤层岩层控制国内研究现状..............................................................6 1.2.3 国外研究状况........................................................................................... 11 1.3 论文研究的主要内容.......................................................................................12 2 浅埋煤层长壁开采矿压显现规律...........................................................................14 2.1 补连塔煤矿 32206 综采面矿压显现规律 .........................................................14 2.1.1 32206 综采面概况.....................................................................................14 2.1.2 32206 综采面矿压显现规律......................................................................15 2.2 张家峁煤矿 15201 试采面矿压显现规律 ........................................................18 2.2.1 15201 试采面概况.....................................................................................18 2.2.2 15201 试采面矿压显现规律......................................................................19 2.3 榆树湾煤矿 20102 长壁工作面矿压显现规律.................................................22 2.3.1 20102 长壁工作面概况.............................................................................22 2.3.2 20102 长壁工作面矿压显现规律..............................................................22 2.4 哈拉沟煤矿 22209 综采工作面矿压显现规律.................................................24 2.4.1 22209 综采工作面概况.............................................................................24 2.4.2 22209 综采工作面矿压显现规律..............................................................25 2.5 浅埋煤层工作面矿压显现的动态特性分析.....................................................26 2.6 本章小结 ..........................................................................................................28 3 典型浅埋煤层覆岩破坏及动态载荷传递规律........................................................29 3.1 典型浅埋煤层载荷传递仿真模拟....................................................................29 3.1.1 模拟原型及相似条件...............................................................................29 3.1.2 模型参数 ..................................................................................................30 3.2 典型浅埋煤层载荷层破坏规律与特征............................................................30 3.3 典型浅埋煤层载荷层动态载荷传递规律 ........................................................32 3.3.1 工作面前后关键层应力分布总体规律....................................................32 3.3.2 顶板关键层结构关键块典型载荷分布规律.............................................33 3.3.3 采场顶板结构关键块动态载荷传递过程 ................................................36 3.3.4 关键块B载荷传递动态规律..................................................................44 目 录 II 3.3.5 沙土层的载荷传递规律...........................................................................44 3.4 本章小结 ..........................................................................................................45 4 近浅埋长壁工作面顶板结构特征与载荷传递规律................................................47 4.1 土层塑性材料物理模拟技术............................................................................47 4.1.1 土层物理性质及应力应变全程曲线测定 ................................................47 4.1.2 土层的水理性和应力应变全程相似条件的建立............................................49 4.1.3 土层相似材料及其配比的研制............................................................................51 4.1.4 黏土层相似材料配比性能 .......................................................................52 4.2 榆树湾 20102 近浅埋工作面开采相似模拟研究......................................................55 4.2.1 榆树湾 20102 首采工作面地质概况...................................................................55 4.2.2 相似模拟实验设计...................................................................................56 4.2.3 20102 近浅埋工作面载荷传递规律.....................................................................57 4.3 海湾 3 号井 2-2 上近浅埋煤层开采相似模拟研究......................................................59 4.3.1 海湾 3 号井 2-2 上近浅埋煤层地质概况...........................................................59 4.3.2 相似模拟实验设计...................................................................................................60 4.3.3 海湾煤矿近浅埋工作面载荷传递规律..............................................................61 4.4 近浅埋煤层载荷传递规律...............................................................................................63 4.5 本章小结...............................................................................................................................64 5 典型浅埋煤层动态顶板结构分析...........................................................................66 5.1 典型浅埋煤层采场覆岩动态结构.................................................................................66 5.1.1 压力拱理论................................................................................................................66 5.1.2 采场覆岩动态“拱状”破坏发育规律..............................................................67 5.1.3 采场覆岩动态破坏过程及机理............................................................................68 5.2 覆岩“拱状”破坏力学模型................................................................................69 5.3 典型浅埋煤层覆岩载荷传递因子.................................................................................72 5.3.1 载荷传递岩性因子的提出.....................................................................................72 5.3.2 初次来压载荷传递岩性因子的确定...................................................................72 5.3.3 周期来压载荷传递岩性因子的确定...................................................................73 5.3.4 载荷传递的时间因子...............................................................................75 5.4 典型浅埋煤层合理支护阻力............................................................................76 5.4.1 浅埋煤层采场关键层结构模型............................................................................76 5.4.2 合理支护阻力计算模型..........................................................................................76 5.4.3 支护阻力实例分析...................................................................................................78 5.5 本章小结 ..........................................................................................................79 6 近浅埋煤层顶板结构 ..............................................................................................80 6.1 近浅埋煤层的关键层判别...............................................................................................80 目 录 III 6.1.1 关键层的定义和特征..............................................................................................80 6.1.2 关键层上载荷的确定..............................................................................................80 6.1.3 关键层的判别条件...................................................................................................81 6.1.4 近浅埋工作面关键层判别实例............................................................................82 6.2 近浅埋煤层采动覆岩“三带”特征 ....................................................................83 6.2.1 典型浅埋煤层采动覆岩特征....................................................................83 6.2.2 近浅埋煤层采动覆岩特征 .......................................................................84 6.2.3 浅埋煤层采动裂隙带分类 .......................................................................85 6.2.4 基于“拱梁”结构模型的“下行裂隙”发展机理.................................86 6.3 近浅埋煤层顶板结构.......................................................................................91 6.3.1 近浅埋煤层采场覆岩应力拱演化规律....................................................91 6.3.2 近浅埋煤层主亚双关键层结构模型........................................................92 6.3.3 近浅埋煤层主关键层和亚关键层的相互作用关系.................................93 6.3.4 近浅埋煤层采场来压歩距的确定............................................................94 6.4 近浅埋煤层采场支架合理工作阻力的确定.....................................................96 6.4.1 亚关键层“砌体梁”结构形态支架工作阻力的确定.............................96 6.4.2 亚关键层“台阶岩梁”结构形态支架工作阻力的确定 .........................96 6.5 本章小结 ..........................................................................................................97 7 结论 .........................................................................................................................99 7.1 结论..................................................................................................................99 7.2 创新点............................................................................................................ 100 致 谢 ....................................................................................................................... 101 参考文献 ................................................................................................................... 102 附 录 ....................................................................................................................... 109 主要符号表 I 主要符号表 b支架宽度; h老顶关键层厚度; 1 h载荷层厚度; 1 h亚关键层和主关键层夹层厚度 i亚关键块的块度; G K 载荷传递系数; 0 K 载荷层跨厚比; r K载荷传递岩性因子; t K 载荷传递的时间因子; l关键块长度(周期来压步距) ; 01 l 老顶岩块长度; cy L亚关键层初次来压歩距; cz L 主关键层初次来压歩距; i L 采场来压歩距; k l 控顶距长度; n l 第 n 层的破断距; 1n l第 n1 层的破断距; zy L亚关键层的周期来压歩距; zz L主关键层的周期来压歩距; M组合梁弯矩; o坐标原点; p静止土压力强度; 01 P 初次来压的顶板载荷; G P0老顶关键层岩块重量; Z P0载荷层传递的重量; 1 P、 2 P块体承受的载荷; 0 Q 关键层破断自身及其上部控制岩层的载荷; 1 Q亚关键层上方覆岩的重量; A Q、 B QA,B接触铰上的剪力; 1 R顶板结构的合理支护力; 主要符号表 II 2 RN块体的支承反力; Ty R亚关键层极限抗拉强度; Tz R主关键层极限抗拉强度; 支架的支护效率; W直接顶岩柱重量; E 弹性相似常数; 应力相似常数; c 粘聚强度相似常数; 内摩擦角相似常数; j 亚关键层和主关键层夹层容重; 岩块破断角; 1 M块体的转角; max1 台阶岩梁关键块的最大转角; 、水平压力差系数和竖直压力差系数; t 峰值强度时的应变量; c 料残余强度时的应变量; 1 沙土层的密度; 载荷层侧应力系数; 载荷层内摩擦角; g基岩容重; t 峰值强度; c 残余强度; 破断岩块下沉量。 1 绪论 1 1 绪论 1.1 论文选题背景及意义 1.1.1 选题背景 煤炭作为我国的主要能源,在国民经济建设中具有重要的战略地位。煤炭工业是我 国重要的基础产业。从能源消费结构来看,煤炭在中国能源消费总量中占主导地位,煤 炭是我国的主体能源和重要的工业原料。 2010 年, 中国一次能源生产总量 29.7 亿 t 标准 煤。其中,煤炭消费总量 32.5 亿 t,占 70.9﹪[1]。据预测,2020 年全国煤炭需求量为 31 亿 t~34 亿 t[2]。 我国煤炭资源主要集中分布于西北的晋、陕、蒙、疆四省(区) , 占全国的 81.3﹪[3]。 西部大煤田的开发建设,将为西部大开发奠定良好的能源基础。而其中相当一部分煤层 是距地表较浅的浅部煤层 (即浅埋煤层[4]) , 主要浅埋煤田有陕西和内蒙古交界处的神府 东胜煤田、宁夏灵武煤田、新疆的吐哈煤田等。其中,位于毛乌素大沙漠边缘的神府东 胜煤田总面积 31172km2,已探明储量 2236 亿 t,约占全国总探明储量的 1/3,远景储量 6000 亿 t10000 亿 t[5],是我国目前探明储量最大的的煤田,该煤田与美国的阿巴拉契 亚煤田、德国的鲁尔煤田等被并称为世界七大煤田。其煤质优良、可采煤层多、煤层厚、 构造简单、开采技术条件优越煤质优越,市场前景广阔,为世人瞩目,将逐步发展成为 采煤、电力、煤炭化工综合性的能源战略基地[57]。本区是 21 世纪煤炭工业战略西移的 首选基地,对国民经济的发展具有重大意义。 浅埋煤层的主要赋存特征[4]为埋藏浅,基载比 Jz 小于 1,顶板体现单一主关键层 结构特征。浅埋煤层开采实践表明,主要存在两大岩层控制问题其一是顶板地层垮落 直达地表,形成切落式破坏,顶板压力剧烈,工作面顶板失控而形成的台阶下沉达到 1000mm,造成支护设备压毁(如图 1.1 所示) ,工作面停产等事故,出现了严重的顶板 灾害;其二,开采地表塌陷形成大量裂缝,加剧了地表水土流失和荒漠化(如图 1.2 所 示) 。同时,对于公路(如图 1.3 所示) 、地表建筑物(如图 1.4 所示)造成损害。煤矿 开采引起岩层与地表移动,产生导水裂隙带。这不仅破坏植被和地下含水层,导致岩溶 地下水位衰减而引起地表岩溶塌陷,并使井泉干涸、河溪断流,而且导致地表水泄漏, 并改变地表土壤的灌溉性、持水性和水土平衡结构,致使表土疏松,裸土、裸岩面积扩 大,加剧矿区水土流失,导致土地荒漠化,同时也使该区域生态环境面临严重危险。矿 区开发初期,地表植被破坏面积就达 126.6 万亩,年增加水土流失量 2780 万 t,频繁的 沙尘暴已经为我们敲响了警钟。国家环保总局在荒漠化治理规划中,将神府东胜准 西安科技大学博士学位论文 2 格尔煤田采动沙区环境治理和毛乌素沙漠南缘长城沿线沙地煤田开发环境破坏作为重 点治理区域。 图 1.1 工作面被压坏的液压支架(局部) 图 1.2 地表裂缝 图 1.3 公路受到破坏