基于介电特性的井下煤岩界面识别方法研究.pdf
硕士学位论文 基于介电特性的井下煤岩界面识别方法研究 Study on Coal-rock Interface Identification under the Mine Based on Dielectric Properties 作 者程园新 导 师丁恩杰 教授 中国矿业大学 二〇一八年五月 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 中图分类号 TD80 学校代码 10290 UDC 622 密 级 公开 中国矿业大学 硕士学位论文 基于介电特性的井下煤岩界面识别方法研究 Study on Coal-rock Interface Identification under the Mine Based on Dielectric Properties 作 者 程园新 导 师 丁恩杰 教授 申请学位 工学硕士 培养单位 信息与控制工程学院 学科专业 信息与通信工程 研究方向 矿山物联网 答辩委员会主席 李世银 评 阅 人 盲评 二○一八年五月 致致 谢谢 时光飞逝, 转眼间三年的硕士研究生学习已经接近尾声, 值此论文完成之际, 谨向我尊敬的导师, 关心和帮助过我的老师、 同学和朋友, 表达我最真挚的感谢, 谢谢各位对我的支持和鼓励。 首先, 衷心感谢我的导师丁恩杰教授。 在攻读硕士研究生学位的三年时间里, 丁恩杰老师不仅在学术和科研上给予我谆谆教诲和悉心指导,而且在学习、生活 等方面给予了我无微不至的关怀。丁恩杰老师渊博的知识、严谨的治学态度、丰 富的理论和实践经验、 分析问题的独到见解以及诲人不倦的教学精神将使我受益 终生;而其广阔的胸襟、宽容的态度和平易近人的风范将永远是我为人处世的楷 模。在此谨向导师致以崇高的敬意和忠心的感谢 传承是一个很美妙的事情,实验室最好的优点就是传承。已经毕业的师兄师 姐给我们树立了一个好榜样,同时他们将自己的心得体会传授给我们,让我们在 科研、工作中少走了很多弯路。实验室的大家庭很温暖,谢谢同级的你们,和你 们在一起,让我觉得求学路上的艰辛也是可以这般的精彩,即使今后大家各奔东 西,青春的日子总是这般的美好;谢谢项目组的师弟们,你们的承担与贡献,替 我们减少了很多压力,祝你们学有所成。 感谢含辛茹苦养育我的父母, 感谢这么多年来你们对我的关心、 支持和理解, 你们是我生活前进的动力。 衷心感谢各位老师和专家在百忙之中审阅我的论文。 I 摘摘 要要 无人化工作面开采技术是一种高效的安全开采方式, 可以有效的减少人员事 故,确保煤矿安全开采。要达到这一目的,首先要解决煤岩智能识别问题,煤岩 识别是指采煤机切割煤层时应尽量沿着煤层和岩层的分界面开采, 当切割到岩层 时要及时调整采煤机滚筒高度避免造成欠割或过切割。 这一问题一直是国内外的 研究热点,虽然诸多学者提出了许多具有代表性的研究方法,但各个方法只是探 讨了煤岩识别的可行性, 并没有形成了一个普适的解决方案。 目前存在以下问题 1)缺少在复杂地质条件下适用性较广泛的识别方法。由于我国煤层赋存条 件多变且复杂,不同煤矿的煤与岩石的种类千差万别,即便在同一煤矿中,煤层 与岩层的界面也是没有规律可循,并且在开采的煤层中也可能出现断层与夹矸。 2)缺少适用于煤岩自身特性改变或相似时的煤岩识别方法。众多煤矿的煤 岩特性及状态又不尽相同,不同种类的煤炭和岩石或许由于水分、密实度、颗粒 度、自身包含的矿物质种类等原因存在自身性质的改变,需要对煤岩自身特性进 行研究,探讨具有更好的适用性、可靠性的煤岩界面识别方法。 基于上述的考虑与分析,本文针对煤岩界面识别问题展开研究首先,研究 煤岩的物理特性、无机矿物质的种类与含量对煤岩介电特性的影响;其次,依据 煤岩介电特性不同,基于 Bruggeman 理论提出一种煤含量估算模型;最后,利 用 Comsol Mutiphysics 仿真软件,通过改进图像重建算法,提出一种煤岩界面可 视化识别模型。 通过实物试验、理论验证与仿真试验可得 (1)在 10KHz30MHz检测频率 内,试验中烟煤、无烟煤、岩石的物理特性(含水量、密实度、粒度)改变、或 者无机矿物质(高岭石、方解石、石英石、褐铁)含量改变,煤岩介电常数总能 区别; (2)基于 Bruggeman理论提出的煤含量估算模型,在 10 KHz30 MHz的 检测范围内,理论煤含量值与实际值的相对误差△q′较小,平均在 4.10以下; 在高频区间内,理论煤含量的精确度相对较高,在 500 KHz30 MHz内,△q′ 平均可控制在 2.6左右; (3)利用 Comsol Mutiphysics 仿真软件和改进的图像 重建算法,提出一种煤岩界面可视化识别模型,既能够很好的识别煤岩分层的界 面,又可以识别煤层中存在夹矸的情况,适用于地质条件复杂的煤矿。 总体上,本文提出的基于介电特性的煤岩识别方法具有简单、适用性广泛的 特点,为实现井下无人化开采提供一种新的煤岩识别方法。 该论文有图 55 幅,表 12 个,参考文献 90 篇。 关键词关键词煤岩界面识别;介电特性;Bruggeman理论;ECT 技术 II Abstract Unmaned working face mining technology is an effective and safe wayof exploitation, which can effectively reduce the accidents and ensure the safe mining. In order to achieve this goal, the intelligent identification of coal rock interface should be solved at first which is the key problem restricting the intelligent coal mining equipment. Coal-rock interface refers to the interface betweencoal layer and rock layer. The mining machine should cut along with the coal rock interface and adjust the height of cutting drum immediately to avoid over/under cutting when the coal rock interface changes. The topic has been a hot research at home and abroad. Though many scholars have put forward many representative research methds, a final solution has not been ed.At present, the following problems exist 1 Lack of coal-rock identification suitable for different geology.Due to the changeable and complicated coal seam conditions in China, the coal and rock types of different coal mines vary widely.Even in the same coal mine, the interface between coal and rock is irregular, and faults and gangue may also occur in the coal mined. 2 Lack of the study of the characteristics of the coal rock itself or similar s.The properties of different types of coal and rock will change due to changes in water, compactness, granularity, and the types of minerals they contain.We need to study the characteristics of coal and rock, and discuss the of coal-rock interface identification with better applicability and reliability. Based on the above considerations and analysis, we conducted a study on the interface identification of coal-rockFirst of all, we study the variation trend of the coal-rock dielectric property when the physical properties, the types and content of inorganic minerals change.Secondly, according to the different dielectric characteristics of coal-rock, a coal content estimation model is proposed based on Bruggemans theory. Finally, using Comsol Mutiphysics simulation software, an improved image reconstruction algorithm is proposed, and a visual identification model of coal rock interface is proposed. Through physical test, theoretical verification and simulation, it can be obtained 1In this test,within 10KHz30MHz frequency, the physical properties including water content, compactness, and particle size of bituminous coal, anthracite and rock were changed, or the content of inorganic minerals including kaolinite, calcite, quartz III and brown iron were changed, the dielectric constant of coal was always different. 2Based on the Bruggeman theory, we proposed the coal content estimation model. In the detection range of 10 KHz30 MHz, the relative error of the theoretical coal content value and the actual value is smaller, with an average of less than 4.10. In the high frequency range, the accuracy of theoretical coal content is relatively high, and within 500 KHz30 MHz, the average can be controlled at about 2.6. 3Using the Comsol Mutiphysics simulation software and the improved image reconstruction algorithm, we propose a visual identification model of coal and rock interface.It can effectively identify the stratification of coal and rock, and it can also identify the gangue in the coal seam.This can be applied to coal mines with complicated geological conditions. In general, the dielectric property based identification of coal and rock has the characteristics of simplicity and wide applicability, which provides a new identification for the underground unmanned mining. There are 55 figures,12 tablesand 90 references in this paper. Keywords Coal rock interface identification; Dielectric properties; Bruggeman theory; ECT technology IV 目目 录录 摘要摘要................................................................ I I 目录目录............................................................... IVIV 图清单图清单........................................................... VIIIVIII 表清单表清单............................................................ XIIXII 变量注释表变量注释表....................................................... XIIIXIII 1 1 绪论绪论.............................................................. 1 1 1.1 研究背景与意义 .................................................. 1 1.2 国内外研究现状 .................................................. 1 1.3 研究存在的主要问题 .............................................. 6 1.4 论文内容与结构 .................................................. 7 2 2 基本理论与关键技术基本理论与关键技术 ................................................ 9 9 2.1 电磁场基本理论 .................................................. 9 2.2 煤岩的介电特性 ................................................. 11 2.3 有效介质理论 ................................................... 12 2.4 电容层析成像技术 ............................................... 16 2.5 本章小结 ....................................................... 21 3 3 物理特性对煤岩介电特性的影响研究物理特性对煤岩介电特性的影响研究 ..........................................................2222 3.1 含水量对煤岩介电特性的影响研究 ................................. 22 3.2 密实度对煤岩介电特性影响的研究 ................................. 29 3.3 粒度对煤介电特性影响研究 ....................................... 34 3.4 本章小结 ....................................................... 38 4 4 无机矿物质对煤介电特性的影响研究无机矿物质对煤介电特性的影响研究 ..........................................................3939 4.1 矸石对煤介电特性影响研究 ....................................... 39 4.2 无机矿物质对煤介电特性的影响研究 ............................... 41 4.3 本章小结 ....................................................... 49 5 5 煤岩界面识别模型的建立煤岩界面识别模型的建立 ............................................................................5050 5.1 煤含量模型建立及验证........................................... 50 V 5.2 煤岩界面可视化识别模型的建立................................... 55 5.3 其他煤岩识别模型对比........................................... 62 5.4 本章小结....................................................... 65 6 6 总结总结 ............................................................................................................6767 6.1 总结........................................................... 67 6.2 展望........................................................... 68 参考文献参考文献 ........................................................................................................6969 作者简历作者简历 ........................................................................................................7575 学位论文原创性声明学位论文原创性声明 ......................................................................................7676 学位论文数据集学位论文数据集 ..............................................................................................7777 VI Contents Abstract........................................................................................................................ II Contents ......................................................................................................................VI List of Figures......................................................................................................... VIII List of Tables ............................................................................................................ XII List of Variables ..................................................................................................... XIII 1 Introduction ............................................................................................................... 1 1.1 Research Background and Significance................................................................... 1 1.2 Research status at home and abroad ........................................................................ 1 1.3 The main problems in the study ............................................................................... 6 1.4 Paper content and structure ...................................................................................... 7 2 Basic theory and key technology ............................................................................. 9 2.1 Basic theory of electromagnetic field ...................................................................... 9 2.2 The dielectric properties of coal-rock .................................................................... 11 2.3 Effective medium theory........................................................................................ 12 2.4 Capacitance tomography........................................................................................ 16 2.5 Summary of the Chapter ........................................................................................ 21 3The influence of physical properties on the dielectric properties of coal-rock .. 22 3.1 The influence of moisture content on dielectric properties of coal-rock ............... 22 3.2 The influence of compactness on dielectric properties of coal-rock ..................... 29 3.3 The influence of particle size on coal dielectric characteristics............................. 34 3.4 Summary of the Chapter ........................................................................................ 38 4 The influence of inorganic minerals on the dielectric properties of coal ........... 39 4.1 The influence of gangue on the dielectric properties of coal ................................. 39 4.2 The influence of inorganic minerals on the dielectric properties of coal............... 41 4.3 Summary of the Chapter ........................................................................................ 49 5 The establishment of coal-rock interface recognition model .............................. 50 5.1 Establishment and verification of coal content model ........................................... 50 5.2 The establishment of visual identification model of coal-rock interface............... 55 5.3 Comparison of other coal-rock recognition models............................................... 62 VII 5.4 Summary of the Chapter ........................................................................................ 65 6 Conclusions .............................................................................................................. 67 6.1 Conclusion ............................................................................................................. 67 6.2 Future work ............................................................................................................ 68 References ................................................................................................................... 69 Author’s Resume ........................................................................................................ 75 Declaration of Thesis Originality.............................................................................. 76 Thesis Data Collection ............................................................................................... 77 VIII 图清单图清单 图序号 图名称 页码 图 1-1 记忆截割示意图 4 Figure 1-1 Schematic diagram of memory cutting 4 图 2-1 Maxwell-Garnett 弥散微结构示意图 12 Figure 2-1 Maxwell-Garnett theory dispersion diagram. 12 图 2-2 Bruggeman 聚集微结构模型示意图 13 Figure 2-2 Bruggeman microstructure model diagram 13 图 2-3 PingSheng 双团簇微结构示意图 14 Figure 2-3 The schematic diagram of PingSheng dual cluster microstructure 14 图 2-4 Clausius-mossotti 空间模型 15 Figure 2-4 Clausius-mossotti space model 15 图 2-5 拉冬变换的原理 16 Figure 2-5 The principle of radon trans 16 图 2-6 电容层析成像采集系统 18 Figure 2-6 Capacitance tomography acquisition system 18 图 2-7 方形及圆形传感器机构 18 Figure 2-7 Square and round sensor mechanism 18 图 2-8 不同布置的传感器结构 19 Figure 2-8 Different arrangement of sensor structure 19 图 3-1 压片样品 23 Figure 3-1 Tablet sample 23 图 3-2 实验装置图 23 Figure 3-2 Experimental apparatus figure 23 图 3-3 烟煤样品加入 1mL5mL 清水实物图 24 Figure 3-3 Samples of bituminous coal were added to 1mL5mL of water 24 图 3-4 烟煤样品不同含水量的相对介电常数图 25 Figure 3-4 The relative dielectric constant graph of different water content of bituminous coal samples 25 图 3-5 无烟煤样品加入 1mL5mL 清水实物图 26 Figure 3-5 The samples of anthracite were added to 1mL5mL water 26 图 3-6 无烟煤样品不同含水量的相对介电常数图 27 Figure 3-6 Relative dielectric constant graph of different water content of anthracite sample. 27 图 3-7 岩石样品加入 1mL5mL 清水实物图 27 Figure