多分层充填开采覆岩及膏体变形破坏研究.pdf
硕士学位论文 多分层充填开采覆岩及膏体变形破坏研究 Deation and Failure of Overburden and Paste Backfill due to Multiple Slices Backfill Mining 作 者刘佳维 导 师隋旺华教授 中国矿业大学 二○一六年五月 万方数据 中图分类号 P642 学校代码 10290 UDC 622 密 级 公开 中国矿业大学 硕士学位论文 多分层充填开采覆岩及膏体变形破坏研究 Deation and Failure of Overburden and Paste Backfill due to Multiple Slices Backfill Mining 作 者 刘佳维 导 师 隋旺华 申请学位 工学硕士 培养单位 资源学院 学科专业 地质工程 研究方向 工程地质与岩土工程 答辩委员会主席 姜振泉 评 阅 人 匿名评审 二○一六年五月 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 保密的学位论文在解密后适用本授权书。 作者签名 导师签名 年 月 日 年 月 日 万方数据 论文审阅认定书论文审阅认定书 研究生 刘佳维 在规定的学习年限内,按照研究生培养 方案的要求,完成了研究生课程的学习,成绩合格;在我的指导下完 成本学位论文,经审阅,论文中的观点、数据、表述和结构为我所认 同,论文撰写格式符合学校的相关规定,同意将本论文作为学位申请 论文送专家评审。 导师签字 年 月 日 万方数据 致谢致谢 本论文是在导师隋旺华教授的精心指导下完成的。从课程学习、论文选题及 后期研究与论文写作,始终得到隋老师的谆谆教诲和亲切关怀,论文的每一个细 节都凝聚着隋老师的心血。隋老师渊博的知识和严谨的治学态度使我受益匪浅, 鼓舞着我去克服困难、努力进取,在此,谨向尊敬的导师致以崇高的敬意和衷心 的感谢 在研究生学习和生活期间以及论文试验阶段, 师母张改玲教授给予了真切的 关怀和无私的帮助,她的恩情学生铭记在心 在论文的选题及试验阶段, 得到了朱术云教授、 鞠远江副教授、 贺虎副教授、 李小琴副教授、于宗仁老师、杭远老师等的指导和帮助,在此表示衷心的感谢 感谢董青红教授、曹丽文教授、姜振泉教授、李文平教授、杨伟峰教授、孙如华 副教授、吴圣林副教授、王档良副教授、孙强副教授、朴春德副教授、乔伟副教 授、于庆等老师在研究生学习期间给予的指导和帮助,在此,表示衷心的感谢 在论文试验及编写的过程中,得到了杨滨滨、王文学、褚程程、高岳、高炳 伦、王亚萍、李维欣、郑国胜、惠爽、袁世冲、刘海清、赵守良等硕博士的大 力帮助,在此表示衷心感谢。感谢一直以来关心和帮助过作者的同学和朋友,尤 其感谢张丁阳、邵颍、周晓亭、梁艳坤、屈浩、张新佳、王文国、熊加路等师兄 弟妹们的陪伴 感谢山东太平煤矿赵庆杰总工程师、张攀副总工程师、满海英科长提供的现 场第一手资料及热情的指导和帮助,没有他们的辛勤劳动,作者将无法顺利完成 论文。 在论文的编写过程中,参阅了大量的文献和著作,启迪了作者的思路、开拓 了作者的思维,在此,作者对这些国内外学者和前辈们致以崇高的敬意 最后,衷心感谢各位专家、老师在百忙之中评审论文。由于作者水平和时间 有限,文中难免有不足、疏漏甚至错误之处,敬请各位专家、老师批评指正,希 望得到更多的指导和帮助。谢谢大家 万方数据 I 摘摘 要要 山东太平井田煤系被第四系松散层覆盖,松散层平均厚度 158m,松散层底 部赋存一中等富水性含水层。太平煤矿六南采区基岩厚度 032.6m,基岩较薄, 故太平煤矿六南 01 工作面属于典型的厚松散含水层薄基岩下煤层开采。 本文采用试验研究、理论分析、物理模型和数值模拟等方法,对膏体充填材 料的长期力学性质和水稳性、以及在充填开采过程中的作用机理进行了研究,并 对垮落法开采、 充填开采及条带充填间歇开采等多种采煤方法的覆岩及充填体的 变形移动特征与应力演化规律进行了对比分析研究。 建立了膏体充填材料水稳性 评判标准,提出合理且高效的开采方案,为矿井实际开采工作提供理论依据。主 要成果如下 1以 SL 胶结料、粉煤灰及河砂为原材料的膏体充填材料具有较高的早期强 度和后期强度,可满足充填体自稳及后期强度的需要;依据建立的水稳性工程评 判标准,膏体充填材料的水稳性属中等至强,软化性质、耐崩解性较强,无膨胀 性,稳定后的弱渗透性充填固结体可作为相对隔水层,对水体下膏体充填开采有 利。 2在总结分析膏体充填开采过程中充填体的作用机理及充填效果的影响因 素的基础上,采用物理和数值模拟相结合的方法对太平煤矿六南 01 工作面不同 方法分层充填开采进行了研究。研究结果表明,四分层开采结束后,四分层全垮 落法开采对覆岩的扰动程度最大, 其次是一分层垮落开采其余充填开采和四分层 全部充填开采,四分层全部条带充填间歇开采对覆岩的扰动程度最小,地表沉陷 控制效果最好。 数值模拟推测等效采厚与实测等效采厚相吻合, 太平煤矿膏体充填开采欠接 顶量以及顶底板移近量控制效果非常好,膏体充填开采能有效的控制地表沉陷、 上分层完整固结的充填体能为下分层煤层充填开采起到较好的隔水保护层作用。 3结合相近的实际工程开采经验可知, 近松散含水层薄基岩开采条件下, 顶 板垮落的情况下只可膏体充填开采二、三分层;四分层全部充填开采时,应严格 控制采厚和开采范围,且四分层全部条带充填间歇开采时安全性最高,前三分层 形成的膏体固结体可以有效抑制覆岩破坏的发展, 对四分层开采起到有益的作用。 该论文有图 80 幅,表 27 个,参考文献 160 篇。 关键词关键词膏体充填开采;水理性质;覆岩变形;应力演化;地表沉陷;等效采厚 万方数据 II Abstract The coal measures in the Taiping Coalmine in Shandong province is covered by the Neogene unconsolidated layers, which has an average thickness of 158m and an aquifer with medium water abundance occurrenced at the bottom of the Neogene System. The bedrock in the 6th district in the Taiping Coalmine has a thickness of 032.6m, which is classified as a thin bedrock. Then coal mining of panel S01 in the Taiping Coalmine belongs to the typical coal mining under thick unconsolidated aquifer and thin bedrock. Based on the experimental investigation and theoretical analysis, scale model testing and numerical simulation s, the long-term mechanical properties and water stability of the paste backfill material, and the function mechanism of backfill during the process of filling mining were studied. Moreover, the overlying strata movement and deation of backfill, the stress evolution of overburden and backfill were comparatively analyzed with intermittent filling in strip mining, longwall excavation and continuous filling. Then, the water stability criteria was established, and the efficient and rational mining scheme was proposed, which provides a theoretical basis for the mining practice. The main results are as follows 1 The results show that the paste backfill material composed of SL cement, fly ash and sand has a high early strength, as well as the later strength, which can meet the needs of self-stabilization and post-filling body strength. The water stability of paste backfill material is moderate to strong according to the water stability criteria proposed in this paper. It is benefit to the paste backfill mining under water bodies with a strong softening properties and resistance to disintegration. Additionally, the backfill has little swelling, and the stable consolidation backfill with low permeability can be used as a relatively impermeable layer which is very favorable to mining under water bodies. 2 Research on the slicing filling mining with different mining scheme in the panel S01 of the Taiping Coalmine was carried out based on the use of scale model testing and numerical simulation s, on the basis of the summarizing and analyzing of the backfill function mechanism and the filling effect influence factor during the paste backfill mining process. The results show that a most therious mining disturbance to the overlying strata by using caving mining in all the four slices, followed by using the caving mining in the first slice and backfill mining in the remaining three slices and continuous backfill mining in all the four slices. Morever, there has a weakest mining disturbance to the overlying strata and best surface subsidence control effect by using 万方数据 III intermittent filling in strip mining in all the four slices. The equivalent mining thickness speculated from numerical simulation is basically in good agreement with the field test. Surface subsidence was effectively controlled as the good control effect of the roof - to - floor convergence and the gap between the backfill and roof in the Taiping Coalmine. Furthermore, the integrated consolidation backfill in the upper slice played a better role of impermeable protective layer for the next coal seam filling mining. 3 Combined with the project of similar mining results, when mining under thick unconsolidated aquifer and thin bedrock, only the second and third slices under the broken roof can be mined out with past backfill mining. The mining thickness and area should be strictly controlled when continuous backfill mining used in all the four slices. However, there has the maximum security in the stope with the intermittent filling in strip mining, as the effective suppress of overburden failure from the consolidation backfill in the last three slices which rt beneficial effects on the mining process of the fourth slice. There are 80 figures, 27 tables and 160 references in this paper. Keywords paste backfill mining; hydraulic properties; overburden failure; stress evolution; surface subsidence; equivalent mining thickness 万方数据 IV 目目 录录 摘摘 要要 .......................................................................................................................... I I 目目 录录 ........................................................................................................................ IVIV 图清单图清单 .................................................................................................................... VIIIVIII 表清单表清单 .................................................................................................................... XIIIXIII 变量注释表变量注释表 ................................................................................................................ XVXV 1 1 绪论绪论 .......................................................................................................................... 1 1 1.1 研究目的和意义 .................................................. 1 1.2 国内外研究现状及存在的问题 ...................................... 1 1.3 研究内容、方法与技术路线 ....................................... 11 2 2 膏体充填材料水理膏体充填材料水理及及力学性质研究力学性质研究 .................................................................... 1313 2.1 膏体充填材料的力学性质 ......................................... 13 2.2 膏体充填材料的水理性质 ......................................... 24 2.3 膏体充填材料水理性质工程判别准则 ............................... 44 2.4 本章小结 ....................................................... 45 3 3 膏体充填开采充填体作用机理及覆岩破坏研究膏体充填开采充填体作用机理及覆岩破坏研究 ................................................ 4747 3.1 膏体充填开采充填体作用机理 ..................................... 47 3.2 膏体充填开采覆岩破坏相似模型试验研究 ........................... 50 3.3 覆岩运动规律分析 ............................................... 69 3.4 本章小结 ....................................................... 71 4 4 膏体充填开采充填体及覆岩活动特征模拟分析膏体充填开采充填体及覆岩活动特征模拟分析 ................................................ 7373 4.1 FLAC3D 数值计算模型建立 ........................................ 73 4.2 模拟过程 ....................................................... 81 4.3 结果分析 ....................................................... 89 4.4 本章小结 ....................................................... 98 5 5 膏体充填开采工程实践膏体充填开采工程实践 ........................................................................................ 9999 5.1 太平煤矿地质及水文地质条件 ..................................... 99 5.2 膏体充填开采应用 .............................................. 103 5.3 本章小结 ...................................................... 112 6 6 结论与展望结论与展望 .......................................................................................................... 113113 万方数据 V 6.1 结论 .......................................................... 113 6.2 展望 .......................................................... 114 参考文献参考文献 .................................................................................................................. 116116 作者简历作者简历 .................................................................................................................. 127127 学位论文原创性声明学位论文原创性声明 .............................................................................................. 128128 学位论文数据集学位论文数据集 ...................................................................................................... 129129 万方数据 VI Contents Abstract ........................................................................................................................ II Contents ..................................................................................................................... VI List of Figures ......................................................................................................... VIII List of Tables ........................................................................................................... XIII List of Variables ........................................................................................................ XV 1 Introduction ............................................................................................................... 1 1.1 Purpose and Significance ......................................................................................... 1 1.2 Present Status in China and Aboard 7431019-1035. [89] W.H.Sui, D.Y.Zhang, Z.D.Cui, et al. Environmental implications of mitigating overburden failure and subsidences using paste-like backfill mining a case study [J]. International Journal of Mining, Reclamation and Environment, 2014, 2961-23. [90] W.H.Sui, G.L.Zhang, Z.Y.Wu, et al. Mining with filling for mitigating overburden failure and water inrush due to coalmining [J]. Engineering Geology for Society and Territory, 2015, 6749-752. [91] F.T.Wang, C.Zhang, X.G.Zhang, et al. Overlying strata movement rules and safety mining technology for the shallow depth seam proximity beneath a room mining goaf [J]. International Journal of Mining Science and Technology, 2015, 251139-143. [92] L.Li, M.Aubertin. A Three-Dimensional Analysis of the Total and Effective Stresses in Submerged Backfilled Stopes [J]. Geotech Geol Eng, 2009, 274559-569. [93] L.Li, M.Aubertin. Numerical Analysis of the Stress Distribution in Symmetrical Backfilled Trenches with Inclined Walls [J]. Indian Geotech J, 2015, 453278-290. [94] 丁德民,马凤山,张亚民,等. 急倾斜矿体分步充填开采对地表沉陷的影响[J]. 采矿与安全 工程学报,2010,2702249-254. 万方数据 122 [95] 温国惠,李秀山,蒲志强,等. 孤岛煤柱膏体充填开采覆岩运动规律研究[J]. 山东科技大学 学报自然科学版,2010,290446-50. [96] 陈雪啸,周华强,孔祥辉,等. 承压水下膏体充填开采顶板破断的数值模拟[J]. 煤炭技 术,2011,300464-66. [97] 卢央泽,苏建军,姜仁义,等. 深部矿体胶结充填开采沉陷规律模拟分析[J]. 山东科技大学 学报自然科学版,2008,270344-50. [98] 杨逾,刘文生,冯国才,等. 注充宽条带跳采全采采煤法[J]. 煤矿开采,2005,10051-317. [99] 许家林,尤琪,朱卫兵,等. 条带充填控制开采沉陷的理论研究[J]. 煤炭学报, 2007, 322120-122. [100] 白矛,刘天泉. 条带法开采中条带尺寸的研究[J]. 煤炭学报,1983,131-35. [101] M.D.G.Salamon, A.H.Munro. A study of the strength of coal pillar [J]. J.S.Afr.Inst.Min.Metall, 1967. [102] 胡炳南. 条带开采中煤柱稳定性分析[J]. 煤炭学报.1995, 202205-210. [103] 涂敏,桂和荣. 厚松散层及超薄覆岩厚煤层防水煤柱开采试验研究[J]. 岩石力学与工程 学报.2004, 23203494-3497. [104] 杨伟峰,隋旺华. 薄基岩条带开采覆岩与地表移动数值模拟研究[J]. 煤田地质与勘 探,2004,32318-20. [105] 杨伟峰,隋旺华. 薄基岩条带开采工程地质力学模型试验研究[J]. 中国矿业大学学 报,2004,332170-173. [106] B.Shen. Principles of treating unconsolidated aquifers and an engineering instance [J].Journal of coal science and engineering, 1995198-103. [107] Y.H.Liang, F.Y.Kang, B.W.Zhou. Reation of the hydraulic stowing mining [C]. Proceedings of the 11th International Conference on Ground Control in Mining, 1992, 358- 370. [108] D.R.Tesarik, J.B.Seymour, T.R.Yanske. Long-term stability of a backfilled room-and-pillar test section at the Buick Mine, Missouri, USA [J]. International Journal of Rock Mechanics 514 24-34. [154] L.Wardle. The use of numerical modeling for underground coal mine design [J]. Analysis application/pdfapplication/msword; application/pdf 电子版论文出版电子版论文出版 发布发布 者者 电子版论文出版电子版论文出版 发布发布 地地 权限声明权限声明 论文总页数论文总页数* * 126126 注共注共 3333 项,其中带项,其中带* *为必填数据,共为必填数据,共 2222 项。项。 万方数据