中小型露天矿边坡稳定性动态评价方法及应用.pdf
国土环境与灾害监测国家测绘地理信息局重点实验室开放基金项目(LEDM2018B01)资助 博士学位论文 中小型露天矿边坡稳定性动态评价方法 及应用 Dynamic uation and Application of Slope Stability in Small and Medium Open-pit Mines 作 者肖海平 导 师郭广礼 教授 中国矿业大学 二〇一九年六月 万方数据 学位论文使用授权声明 学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰写的学 位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一,学位论文著作权拥有者须授权所在学校拥有学位论文的 部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电子版,可以使 用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和科研目的,学校档案 馆和图书馆可以将公开的学位论文作为资料在档案馆、图书馆等场所或在校园网上供校 内师生阅读、浏览。另外,根据有关法规,同意中国国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 万方数据 中图分类号 TD325 学校代码 10290 UDC 密 级 公开 中国矿业大学 博士学位论文 中小型露天矿边坡稳定性动态评价方法 及应用 Dynamic uation and Application of Slope Stability in Small and Medium Open-pit Mines 作 者 肖海平 导 师 郭广礼 教授 申请学位 工学博士 培养单位 环境与测绘学院 学科专业 大地测量学与测量工程 研究方向 变形监测及沉陷控制 答辩委员会主席 徐乃忠 评 阅 人 二○一九年六月 万方数据 致 谢 致 谢 凝视着刚写下的致谢两字,忐忑的心情久久不能平静,生活的五味杂陈,此刻竟无 以言表,但矿大四年春华秋实的岁月,将是我人生又一段重要的经历。在论文即将成稿 之际,真诚地向那些长期关心、支持和帮助我的人致以由衷的感谢与祝福。 我最最最最最需要感谢的人是我一生的恩师郭广礼教授。从报考到毕业,从选 题到成稿,从学习到生活,郭老师就像亲人般给予我最大的宽容和理解,以及无微不至 的关怀,他一直以来对我的关心、支持和帮助,让我永不相忘、铭记于心。论文的选题、 撰写以及成稿,都凝聚着郭老师的智慧和心血,充分展现出了他广博的专业知识、丰富 的实践经验、踏实的工作作风、严谨的治学态度、开拓的创新精神,这些都将是我今后 人生道路上努力的方向。在论文完成之际,谨向我尊敬的郭老师致以最崇高的谢意,祝 您和您的家人身体健康、家庭幸福、心想事成、一生平安 感谢高井祥教授、汪云甲教授、邓喀中教授、吴侃教授、谭志祥教授、张书毕教授、 郑南山教授、查剑锋老师、刘志平老师、闫世勇老师在我博士学习、论文选题和撰写过 程中给予的帮助和指导,祝你们工作顺利、万事如意 感谢实验室赵斌臣老师、裴丽赟老师、师兄朱晓峻博士、郭庆彪博士、李怀展博士、 宫亚强博士,师弟郭凯凯博士、刘潇鹏博士、张国建博士、杜秋博士、郭松博士、卢国 豪硕士、徐友友硕士,2015 级吴飞博士、毕京学博士、夏元平博士,以及王瑞博士、何 倩博士、 何琦敏博士在我博士生活、 学习以及论文撰写过程中给予的关心和帮助, 此外, 还要特别感谢郭庆彪博士在论文实验及建模过程中辛苦的付出和积极的帮助,论文才得 以顺利完成,祝你们前程似锦、事业有成 感谢江西理工大学马大喜教授、刘小生教授、兰小机教授、李沛鸿教授、徐昌荣教 授以及测绘工程系其他老师在我博士学习期间给予的指导和帮助,祝你们生活愉快、幸 福美满 感谢广东省有色地质测绘院虞列沛院长、冯世新总工、王孟穹高级工程师以及越堡 露天矿李玮总工在论文资料收集、数据采集、技术指导以及生活上给予的关心和帮助, 祝你们一帆风顺、步步高升 由衷地感谢我挚爱的妻子陈兰兰女士的支持和鼓励,在我读博四年时间里,默默地 承受着来自家庭以及外界环境的种种压力,确保我能够将全部的时间和精力投入到论文 的研究和撰写中,在此说一声你辛苦了同时,也要感谢我两个可爱的小宝贝对我的 理解,是你们在我心烦意乱、手足无措时给我带来了无尽的欢笑、快乐与幸福,激励着 我不断努力学习和探索的勇气和力量,谢谢你们,我可爱的宝贝们 特别的感谢我最尊敬的父母,您二老的养育之恩令我终生难以回报,感谢你们为我 付出的点点滴滴也要感谢我的哥哥和姐姐,你们的理解和支持也是我继续科学研究前 进的动力。 万方数据 论文研究过程中,参阅了大量的文献资料,在此向文献作者表示感谢。 感谢所有给予我帮助的领导、老师、同事、朋友和同学们。 衷心感谢各位教授、专家在百忙中抽出时间评阅论文和参加论文答辩。 肖海平 二〇一九年五月 于徐州 万方数据 I 摘摘 要要 随着社会经济建设对矿产资源需求的不断增长,矿山(特别是中小型矿山)的过度 开采及管理的缺失,致使露天矿边坡经常发生各种大大小小的地质灾害,并造成了重大 的人员伤亡和财产损失。有效分析和评价边坡的变化趋势及其稳定性状态,是保障矿山 安全生产管理和防治的重要技术手段,也是边坡工程中一项非常重要的研究内容,可为 矿山边坡防灾、减灾、救灾等提供重要的技术依据和决策依据。鉴于此,本文以越堡露 天矿 HP1 边坡为研究对象,综合利用理论分析、现场实测、数学建模、数值模拟、对比 分析、实例验证等技术手段和方法,围绕解决中小型露天矿山“边坡稳定性影响因子(评 价指标)的挖掘、边坡危险性动态评价模型的建立、影响因素的耦合性分析、变形监测 异常数据的修复、边坡防治分析”等五个科学问题进行研究和探讨,主要取得了以下研 究成果 (1)采用定性筛选和定量筛选相结合的方法,实现对边坡稳定性评价指标的挖掘。 论文以越堡露天矿边坡为研究对象,在定性筛选的基础上,建立了顾及效度系数 β 和可 靠性系数ρ的改进灰色关联度评价指标挖掘模型,提高了评价指标的有效性、稳定性和 可靠性,为边坡稳定性动态评价模型的建立奠定了基础,也为提高边坡稳定性评价的准 确性提供了重要保障。在此基础上,采用 UDEC 数值模拟强度折减的方法,以计算是否 收敛作为判断边坡是否失稳的依据,揭示其影响机理,为论文后期边坡的治理提供理论 参考。 (2)克服了以往边坡稳定性评价模型中影响因素指标权重固定不变的不足。论文以 降雨量指标因子为研究对象,构建了一种基于信息熵的指标动态变权重模型,并计算出 各指标在不同月最大降雨量状态下的指标权重。计算结果表明,在不同月最大降雨量状 态下,边坡稳定性影响因素各指标权重不再是一个定值,而是呈现出非线性、动态的变 化规律,而且月最大降雨量、内摩擦角和黏聚力等 3 因素之间呈现出较强的相关性,为 边坡稳定性动态评价模型的建立奠定基础。 (3)在上述建立的动态变权重模型的基础上,构建了基于未确知测度的边坡危险性 动态评价模型,分析了不同月最大降雨量下 HP1 边坡的稳定性状态,并提出利用危险性 重要度指标 q 定量评价边坡的危险性程度。计算结果表明,随着月最大降雨量的不断增 大,该边坡的危险性重要度 q 逐渐提高,危险性等级由 III 级提高到 II 级,也即边坡发生 灾害的可能性由一般提高到较高状态,评价结果与越堡露天矿 HP1 边坡实际情况更具一 致性。此外,论文以“水文条件”和“地下水体”两种影响因素为实验研究对象,通过 引入边坡危险性重要度指标 q 及其相对变化率指标 Rq,定量分析影响因素间的耦合性 程度,研究结果表明, “水文条件”和“地下水体”两类因素之间存在一定的“弱耦合” 现象,为减小建模计算工作量,提高工作效率,分析该露天矿其它边坡的稳定性提供技 术支持和参考。 万方数据 II (4)以越堡露天矿 HP1 边坡为研究对象,对其进行变形监测方案的设计与实施, 并获取监测点的三维坐标数据,在此基础上,采用 3σ 准则对监测数据进行异常性检验, 舍弃或剔除存在异常的监测值。同时,针对变形监测中存在的异常数据(包括丢失或剔 除的异常数据) ,提出一种顾及点位变化的边坡变形监测异常数据时空插值方法,对其进 行修正或插补,以提高边坡监测数据的连续性和完整性。该方法简单、易懂、可行,能 够用于矿山测量技术人员解决变形监测异常数据处理等问题,对指导变形监测点的布设 以及处理异常监测数据具有重要的理论价值和实践意义。 (5)在依据上述时空插值方法获得连续、完整的变形监测数据的基础上,采用位移 量、位移速率与位移矢量方位角相结合的分析方法,多角度、多方位分析边坡的稳定性 及其变形趋势,明确了监测点变化方向,计算出其变形位移量及变形速率的大小,为该 矿山企业的安全生产及管理起到了指导性作用,也为其它边坡及相关领域的分析及研究 提供了理论依据和重要参考。 (6)为防止矿山 HP1 边坡发生进一步的滑坡,本文提出了两套不同的防治方案和 措施,并分别计算出两种方案的投资预估费用,再进行综合对比、分析,确定方案一为 边坡防治的优选方案。同时,分别采用边坡危险度动态评价方法以及边坡稳定性安全系 数的方法,对不同工况条件下治理后的西侧 HP1 边坡的危险性等级及安全系数 Fs进行分 析和计算,其评价等级都为 IV 级边坡危险性较低,安全系数 Fs为 1.315,达到了边坡 安全设计规范的规定要求,两种方法相互补充、验证,更准确地分析了边坡的稳定性状 态,为指导矿山边坡的安全生产和防治提供参考。 该论文有图 59 幅,表 31 个,参考文献 188 篇。 关键词关键词影响因素挖掘;动态评价模型;因素耦合性分析;异常数据修复;防治分析 万方数据 III Abstract With the increasing demand for mineral resources in the social economic construction, because of the lack of management and overexploitation on the mines especially small and medium mines, a variety of large and small geological disasters which have caused major casualties and property losses have been happened in the open-pit slope. So, the effective analysis and uation of the slope stability is an important technical means to ensure the management and control of the mine safety production, and also a very important research content in the slope engineering. It provides an important technical basis and policy-making support for the disaster prevention, disaster reduction and disaster relief of the mine slope. In view of this, this paper takes the HP1 slope of the Yuebao Open-pit Mine as the research object, comprehensively uses the technical means and s such as theoretical analysis, field measurement, mathematical modeling, numerical simulation, comparative analysis, and case verification to solve the excavation of the main influencing factors uating indicator on the slope, the construction of the risk dynamic uation model on the slope, the coupling analysis of the influence factors on the slope stability, repair of abnormal data in deation monitoring and the analysis of slope prevention and control which have been studied and discussed, and the following research results are mainly obtained. 1 Qualitative screening and quantitative screening are combined to excavate the uation index of the slope stability. Taking Yuebao Open-pit slope as the research object, on the basis of the qualitative screening, this paper establishes an improved grey relational degree uation index mining model taking into account the efficiency coefficient β and reliability coefficient ρ, which improves the validity, stability and reliability of the uation index, lays a foundation for the establishment of dynamic uation model of slope stability, and also provides a guarantee to improve the accuracy of the slope stability uation. On this basis, the strength reduction of UDEC numerical simulation is adopted, and the convergence of calculation is taken as the basis to judge whether the slope is unstable or not, and the influencing mechanism is revealed, which provides a theoretical reference for the treatment of the slope in the later stage of the paper. 2 It overcomes the fixed weight shortcomings of the influencing factors on the slope stability uation models in the past. In this paper, the rainfall index factors are taken as the research object, a dynamic variable weight model based on the ination entropy is constructed, and the index weights of the factors under different monthly maximum rainfall are calculated. The results show that the influencing factors weights of the slope stability is no longer a fixed value under the different monthly maximum rainfall, but presents a non-linear 万方数据 IV and dynamic change law, and there is a strong correlation among the maximum monthly rainfall, internal friction angle and cohesion, which lays a foundation for the establishment of the dynamic uation model of the slope stability. 3 On the basis of the dynamic variable weight model established, the variable weight risk dynamic uation model of unascertained measurement is constructed, and the risk importance index q which been quantitative uated the slope risk degree is proposed. The results show that the risk importance degree of the slope is gradually increased with the increasing of the maximum monthly rainfall, and the risk grade is increased from grade III to II, that is, the possibility of slope disaster has been raised from general to higher state, and the uation results are more consistent with the actual situation of the HP1 slope of Yuebao Open-pit Mine. In addition, taking the two factors of hydrology condition and underground water as the experimental object, the coupling degree between the influencing factors is quantitatively analyzed by introducing the slope risk importance degree q and its relative change rate Rq. The results show that there is a certain weak coupling between hydrology condition and underground water. 4 Taking the HP1 slope of Yuebao Open-pit Mine as the research object, the deation monitoring scheme is designed and implemented to obtain the three-dimensional coordinate data of monitoring points. On this basis, the anomaly of monitoring data is checked by using the 3σ criterion, and the anomalous monitoring data are discarded or eliminated. At the same time, aiming at the abnormal data including missing or excluded abnormal data in deation monitoring, the paper has proposed a spatio-temporal interpolation for anomalous data of slope deation monitoring considering point change in order to improve the continuity and integrity of the slope monitoring data. This is simple, easy to understand and feasible. It can be used for mine survey technicians to solve the problems of abnormal data processing of deation monitoring. It has important theoretical value and practical significance for guiding the layout of deation monitoring points and processing abnormal monitoring data. 5 Based on the continuous and complete deation monitoring data obtained by the above spatio-temporal interpolation , the stability and deation trend of the slope are analyzed from multiple angles and directions by the of combining displacement, displacement rate and displacement vector azimuth angle. The change direction of the slope is defined, and the deation displacement and deation velocity are calculated. It plays a guiding role in the safety production and management of the mining enterprise, and also provides theoretical basis and important reference for the analysis and research of other slopes and related fields. 万方数据 V 6 In order to prevent the further disaster of the HP1 slope, two different schemes and measures are put forward, and the investment prediction costs of the two schemes are calculated respectively, and then the comprehensive comparison is carried out to determine the preferred scheme for the slope prevention and control. The dynamic uation of slope danger degree and the safety factor of slope stability are used to analyze and calculate the danger grade and safety factor Fs of HP1 slope under different working conditions. The uation grade is IV the danger of slope is low, and the safety factor Fs is 1.315, which meets the requirements of slope safety design code. The two s complement each other. By filling and verifying, the stability state of the slope is analyzed more accurately, which provides a reference for guiding the safe production and prevention of the mine slope. The dissertation has 59 figures, 31 tables and 188references. Keywords Influencing factors mining; Dynamic uation model; Factor coupling analysis; Abnormal data repairing; Control analysis 万方数据 VI 目目 录录 摘摘 要要 .......................................................................................................................................... I 目目 录录 ........................................................................................................................................ VI 图清单图清单 ......................................................................................................................................... X 表清单表清单 ..................................................................................................................................... XIV 变量注释表变量注释表 ........................................................................................................................... XVII 1 1 绪论绪论 .......................................................................................................................................... 1 1.1 课题研究背景及其意义 ...................................................................................................... 1 1.2 国内外研究现状及存在的问题 .......................................................................................... 3 1.3 主要研究目标和内容 ........................................................................................................ 13 1.4 研究方法及技术路线 ........................................................................................................ 14 1.5 本章小结 ............................................................................................................................ 17 2 2 研究区工程地质环境研究区工程地质环境 ............................................................................................................ 18 2.1 研究区地质环境条件 ........................................................................................................ 18 2.2 研究区工程地质条件 ........................................................................................................ 23 2.3 研究区水文地质条件 ........................................................................................................ 24 2.4 本章小结 ............................................................................................................................ 26 3 3 顾及效度系数和可靠性系数的露天矿边坡稳定性评价指标的挖掘及机理分析顾及效度系数和可靠性系数的露天矿边坡稳定性评价指标的挖掘及机理分析 ........... 27 3.1 露天矿边坡稳定性评价指标筛选的基本思想 ................................................................ 27 3.2 露天矿边坡稳定性评价指标的初选 ................................................................................ 29 3.3 HP1 边坡稳定性评价指标的定性筛选 ............................................................................ 30 3.4 顾及效度系数和可靠性系数的边坡稳定性评价指标定量筛选 .................................... 31 3.5 评价指标对边坡稳定性的影响机理 ................................................................................ 38 3.6 本章小结 ............................................................................................................................ 52 4 4 基于未确知测度的露天矿边坡稳定性动态评价及其因素耦合性分析基于未确知测度的露天矿边坡稳定性动态评价及其因素耦合性分析 ........................... 53 4.1 动态变权重的确定 ............................................................................................................ 54 4.2 危险性动态评价模型的建立及其可行性分析 ................................................................ 56 4.3 HP1 边坡稳定性评价 ........................................................................................................ 65 4.4 边坡稳定性影响因素耦合性分析 .................................................................................... 75 4.5 本章小结 .......................................................................................