孟加拉国Barapukuria井田三厚条件下协调减损开采理论研究与应用.pdf
(6) 基于开采煤层厚硬顶板分阶段破坏, 达到厚硬顶板能量分次释放和基岩水分次 疏放的减损防灾目的,确定了一分层工作面的合理宽度和开采高度;基于协调减损开采 原理,为避免一、二分层开采边界拉伸应力叠加破坏隔水层(LDT)的隔水性能,故二 分层开采后,要破坏一分层区段煤柱使覆岩整体平缓稳态下沉,并控制二分层开采覆岩 导水裂缝带不波及隔水层(LDT),以此确定了二分层协调开采布置方式和开采高度控 制计算方法,构建了适合孟巴矿灾害特点的协调开采减损设计方法。 (7)应用协调减损开采设计方法,给出了矿井的协调减损开采方案,确定矿井一分 层开采高度 3m,二分层开采高度按裂采比 20 计算,分层边界错距按基岩顶界的主要影 响半径的 0.8 倍计算。工程实践表明,一分层的限高开采将开采煤层厚硬顶板分次破坏, 有效地减弱了顶板岩层整体破断能量的释放,避免了矿井淹井事故和冲击矿压灾害的发 生;控制了导水裂缝带高度, 避免隔水层(LDT)被波及, 有效地保护了隔水层(LDT), 一分层区段煤柱被破坏,覆岩整体实现了平缓稳态下沉,分层错距协调布置,避免了开 采边界拉伸应力区的叠加,二分层限高协调开采,有效地保护了隔水层的稳定性,实现 了孟巴矿复杂水体下的安全开采。 关 键 词巴拉库普里亚煤矿;冈瓦纳地层;厚硬顶板;厚松散含水层;矿井水害; 协调减损开采; 研究类型应用研究 types of mine water disasters, determines the southern mining field is the mining disaster control area , for coordinated mining laid the foundation of the overall arrangement of the mine 3 Through numerical simulation,physical similar material simulation and field detection, the hierarchical mining overburden rock failure characteristics and development rule of the water flowing fractured zone were studied.Analysis show that extraction under the condition of gondwana ation,the overburden damage is large and the deation is violent, growth altitude ofwater flowing fractured zone higher and a higher growth rate. This paper gives the prediction ula of the high level of the fracture zone in the layered mining overburden of gondwanana strata, and provides the scientific basis for the stratified limit mining. 4 Post-buckling theory is used to analyze the structure stability of key strata, and based on the energy criterion is given the necessary and sufficient condition on the stability of key strata structure, set up the role of the main key stratum in the overburden rock load limit damage condition, a reference to determine the reasonable width of working face was offered. 5 By theoretical analysis and the surface observation, analyzes the law of strata movement, the strata movement parameters, and by probability integral ,the bedrock of main influencing angle is 76 , the influence angle of the loose layer. is 52 , the main effect of the slicing the strata movement range has been cleared , provides a basis for the determination of interstratified interval coordination between layers. 6 The reasonable width and height of the working surface are determined based on the fracture of the thick and hard roof of the coal seam and the reduction of the energy of the hard top plate and the subtraction of the bedrock water. , on the basis of the principle of coordination of mining to avoid one, two layer mining boundary tensile stress superposition damage LDT of waterproof perance, two layer mining, to destroy a layered segment the whole flat steady-state strata subsidence, coal pillar and control two layered mining overburden rock lead water crack bring not affected LDT, identified the two layered coordinated mining layout and mining height control calculation , constructed the coordinate mining suited to the characteristics of the meng and mine disasters loss design 7 Coordination of mining design , gives a coordinated impairment of mine mining plan, determine layer one mining height 3m,layer two mining height according to crack than 20 calculation, layered boundary fault distance based on0.8 times ofthe major effectbed- rock top boundaryradius.Engineering practice shows that the hierarchical mining to mining height limit times hard thick coal seam roof, the roof strata is weakened effectively overall breaking energy release, to avoid the mine flooding and rock-burst disaster accident; the height of water flowing fractured zoneis controled,LDT’s damage is avoided,protect the LDT effect- tively,layer one section pillar was destroyed, gentle and steady subsidence strata whole imple- ments hierarchical coordinate offset arrangement, the superposition of the mining boundary tensile stress areawas avoided.By limiting layer two mining heigth,protect the stability of water-resisting layereffectively, the Barakupuria Mine complex safety mining under complex water bodieswas implemented. Keyword Bangladesh Barakupuria Mine; gondwana strata; extremely thick coal seam; hard roof; aquifer with thick unconsolidated ation; mine water disaster; rock burst; disaster reduction and prevention Thesis Application Basic Study 目录 I 目 录 1 绪论 ...................................................................................................................................... 1 1.1 选题背景及研究意义 ................................................................................................. 1 1.2 国内外研究现状 ......................................................................................................... 2 1.2.1 冈瓦纳煤田分布及其地质特征 ...................................................................... 2 1.2.2 厚层坚硬顶板煤层的开采现状 ...................................................................... 3 1.2.3 水体下开采技术 .............................................................................................. 4 1.2.4 协调开采技术 .................................................................................................. 9 1.3 研究内容 ................................................................................................................... 10 1.4 研究方法及技术路线 ............................................................................................... 10 1.4.1 研究方法 ........................................................................................................ 11 1.4.2 技术路线 ........................................................................................................ 11 2 冈瓦纳地层地质及灾害特征分析 .................................................................................... 13 2.1 矿井地质采矿条件 ................................................................................................... 14 2.1.1 地层结构 ........................................................................................................ 14 2.1.2 岩体物理力学性质 ........................................................................................ 17 2.1.3 煤层及煤质 .................................................................................................... 18 2.1.4 地质构造 ........................................................................................................ 21 2.2 矿井水文地质条件 ................................................................................................... 23 2.2.1 矿井含水层特征分析 .................................................................................... 25 2.2.2 水体的补、径、排条件 ................................................................................ 28 2.2.3 水体赋存特征 ................................................................................................ 28 2.3 矿井地质条件综合分析 ........................................................................................... 30 2.3.1 地质构造对井下开采的影响 ........................................................................ 30 2.3.2 水文地质特点 ................................................................................................ 30 2.3.3 覆岩岩性及灾害特征 .................................................................................... 31 2.4 本章小结 ................................................................................................................... 32 3 矿井开采突水机制及水害分区 ........................................................................................ 33 3.1 矿井突水条件及影响因素分析 ............................................................................... 33 3.1.1 矿井关键岩组的赋存特征 ............................................................................ 33 3.1.2 矿井突水的影响因素 .................................................................................... 36 3.1.3 水对岩体的影响 ............................................................................................ 37 西安科技大学博士学位论文 II 3.2 矿井突水机制及水害分区 ....................................................................................... 39 3.2.1 矿井突水的条件及机制 ................................................................................ 39 3.2.2 矿井水害工程地质类型及水害分区 ............................................................ 40 3.3 本章小结 ................................................................................................................... 41 4 冈瓦纳地层覆岩导水裂缝带发育规律研究 .................................................................... 43 4.1 导水裂缝带发育规律的数值计算模拟 ................................................................... 43 4.1.1 数值计算模型的建立 .................................................................................... 44 4.1.2 数值计算过程与结果 .................................................................................... 46 4.2 导水裂缝带发育规律物理模拟 ............................................................................... 52 4.2.1 物理相似材料模拟实验设计 ........................................................................ 52 4.2.2 模型的开挖过程及结果 ................................................................................ 53 4.3 钻孔探测 ................................................................................................................... 57 4.3.1 探测方法的选择 ............................................................................................ 57 4.3.2 导水裂缝带井下钻孔探测 ............................................................................ 58 4.3.3 导水裂缝带地表钻孔探测 ............................................................................ 60 4.4 导水裂缝带发育规律分析 ....................................................................................... 64 4.5 本章小结 ................................................................................................................... 67 5 冈瓦纳地层开采覆岩破坏机理 ........................................................................................ 69 5.1 结构关键层的稳定性 ............................................................................................... 69 5.1.1 关键层特征及判定 ........................................................................................ 69 5.1.2 关键层破坏的采高效应 ................................................................................ 72 5.1.3 关键层的稳定性 ............................................................................................ 75 5.2 覆岩的移动规律 ....................................................................................................... 79 5.2.1 覆岩移动及预计 ............................................................................................ 79 5.2.2 地表移动的现场观测 .................................................................................... 81 5.3 本章小结 ................................................................................................................... 85 6 孟巴矿协调减损开采技术及应用 .................................................................................... 87 6.1 协调减损开采技术 ................................................................................................... 87 6.1.1 一分层限高开采 ............................................................................................ 88 6.1.2 二分层限高协调开采 .................................................................................... 89 6.1.3 分层协调错距布置 ........................................................................................ 91 6.1.4 间歇开采 ........................................................................................................ 92 6.2 协调开采减损技术应用 ........................................................................................... 92 6.3 工程应用效果 ........................................................................................................... 94 目录 III 6.4 本章小结 ................................................................................................................... 95 7 结论与展望 ........................................................................................................................ 96 7.1 结论 ........................................................................................................................... 96 7.2 论文创新点 ............................................................................................................... 97 7.3 展望 ........................................................................................................................... 97 致 谢 .................................................................................................................................... 98 参考文献 ................................................................................................................................ 99 附录 ...................................................................................................................................... 107 1 绪论 1 1 绪论 1.1 研究的背景及意义 孟加拉国境内的 Barapukuria(巴拉普库利亚)煤矿(本文称孟巴矿),是孟加拉国 第一个开发兴建的大型现代化矿井,也是该国目前唯一正在开采的煤矿,年生产能力为 100万吨。 孟巴矿距首都达卡路程310km, 在该国西北部Rangpur (朗布尔) 专区的Dinajpur (迪纳杰布尔)县,矿井具有储量丰富、煤质良好和瓦斯含量低等有利的条件,但其位 于亚热带气候区域,长年处于高温且降水丰富的自然环境,因此矿井开采会面临地温高 和补给充足等不利因素,矿井为冈瓦纳(Gondwana)相地层,相比侏罗纪和石炭二叠系 地层,地质采矿条件存在一定的差异,在已有经验和技术都不成熟的条件下,孟巴矿的 开采将面临诸多困难和挑战。 孟巴井田被隔水层(LDT)10m 等厚线分为南北两个开采区域,目前主要在南部区 域进行开采,主采煤层Ⅵ煤,埋深为 300480m,厚度 29.0041.52m,平均 36.84m,煤 层倾角 513,属稳定特厚缓倾斜煤层。受国情和技术等诸多因素的限制,孟巴矿由徐 州矿务集团有限公司和中国机械进出口(集团)有限公司组成的孟巴联合体项目部,负 责承建、生产和组织管理,开拓方式为立井单水平下山开拓,井筒落底标高-260m,采 用分层开采和综采放顶煤结合的开采方法,自然垮落法管理顶板。 孟巴井田揭露地层中缺失了中生代的全部地层,使新生代地层直接覆盖在古生代的 含煤地层之上,井田地层由下至上依次为古生代的寒武纪基底、以及石炭-二叠纪含煤地 层 Gondwana 组,新生代的古近纪 Lower Dupi Tila(本文简称 LDT)组、新近纪的 Upper Dupi Tila(本文简称 UDT)组、以及第四纪 Madhupur(莫图布尔)粘土组,见表 1.1。 表表1.1 孟巴矿井田地层简表孟巴矿井田地层简表 界 系 组 厚度/m 新生界 第四系 Madhupur 4.315.9 新近系 Upper Dupi TiLa 90.70110.00 古近系 Lower Dupi TiLa 080.4 古生界 石炭-二叠系 Gondwana 117.72475.4 寒武系 复合基底 孟巴矿冈瓦纳地层的覆岩结构,采矿地质条件具有一定的特殊性和复杂性 (1)矿井地层中新近纪的 UDT 松散承压含水层厚度达 110m,受气候降雨影响补 给充分,矿井开采后覆岩内的导水裂缝带连通 UDT 松散承压含水层,矿井会发生突水 灾害。 西安科技大学博士学位论文 2 (2)矿井基岩受上覆 UDT 松散含水层补给充分,基岩含水量率高,水体赋存量大, 煤层将基岩分成多个含水段,导水裂缝带连通多个基岩含水段,如矿井涌水量超过排水 量时,会造成矿井淹井事故。 (3)冈瓦纳地层整体具有岩层分层性差、单层厚度较大、岩体强度低、脆性大和孔 隙率高的特点,孟巴矿井田范围内除了 LDT 相对隔水,因覆岩内缺少含泥岩组,故无有 效的隔水岩组,矿井唯一的隔水层是 LDT 岩组,且在井田范围内存在局部的缺失区域。 (4)孟巴矿是孟加拉国的第一个煤矿,受技术及资金投入限制,水文地质勘探程度 不够,矿井建设的排水能力较小,通过分层开采控制开采高度的方法,实现水体的分阶 段疏放以此减轻矿井排水压力,保证矿井正常生产。 (5)矿井主采煤层Ⅵ煤顶板砂岩厚度 110m,分层性差,单层厚度较大,是覆岩中 相对较硬的岩层,矿井开采过程中冲击矿压现象明显。 (6)矿井地温较高,主采煤层Ⅵ煤自然发火倾向明显,特厚煤层分层开采遗留的大 量浮煤,使矿井受到火灾威胁。 孟巴矿是开采条件复杂多种灾害并存的矿井,要解决矿井的安全开采问题,需综合 分析灾害形成特征及机制,基于协调原理,制定矿井减损的科学开采模式,开展孟巴矿 厚松散承压含水层下协调减损开采技术的研究,具有重要的科学价值和实践应用价值, 不仅可以解决矿井受灾害的困扰,缓解孟加拉国煤炭资源供给紧张的现实情况,还可提 升我国采矿技术在国际的影响力,对我国煤矿企业走向世界,发展“一路一带”国际合作 具有重大的推动作用。 1.2 国内外研究现状分析 1.2.1 冈瓦纳煤田分布及其地质特征 矿井安全开采是涉及多个学科领域,囊括诸多技术和研究内容的一项复杂且艰巨的 工作。为此国内外各产煤国在安全开采方面,均开展了大量的理论研究和实践工作,积 累了许多宝贵的经验。 “冈瓦纳”一词由印度地质学家 H.B.Mendlicott 于 1872 年首次提出,主要依据为印度 中央邦冈德(Gond)部落聚居地内含舌羊齿和冷水动物化石的二叠石炭纪冰碛岩,随 后在非洲南部和澳大利亚等地均发现同时代类似特征的冰碛岩,基于此奥地利地质学家 休斯推测地壳大陆板块运动前,非洲南部、澳大利亚和印度半岛等地区构成了远古时期 的冈瓦纳古大陆(Gondwana Continent)[1]。澳大利亚在 Sydney 盆地的西部及南部以及 Burragorang 河谷等地开采过冈瓦纳煤层,开采规模不大,一般采用露天开采,从已经开 采的情况看二叠纪为其主要成煤期,为低灰、低硫、低挥发分烟煤,煤田有断层,但构 造破坏不强烈,煤岩体没有经历完整的成岩作用变质程度较差[2]。 1 绪论 3 孟巴矿区地处南亚地区属亚热带气候,隐伏在冲击平原之下,且年平均降水量均在 2000mm 以上,据