煤矿采场与洞室中某些变形问题的解析分析及锚杆计算.pdf
硕士学位论文 煤矿采场与洞室中某些变形问题的解析分 析及锚杆计算 Analytical Analysis of Certain Deation Problems and the Bolt Design in Coal Stope and Caverns 作 者范金成 导 师蒋斌松教授 中国矿业大学 二〇一四年五月 万方数据 中图分类号 TD3 学校代码 10290 UDC 622.2 密 级 公开 中国矿业大学 硕士学位论文 煤矿采场与洞室中某些变形问题的解析分析及锚 杆计算 Analytical Analysis of Certain Deation Problems and the Bolt Design in Coal Stope and Caverns 作 者 范金成 导 师 蒋斌松 申请学位 工学硕士 培养单位 力学与建筑工程学院 学科专业 岩土工程 研究方向 岩土力学与支护工程 答辩委员会主席 纪洪广 评 阅 人 纪洪广、张子明 二○一四年五月 万方数据 62 学位论文原创性声明学位论文原创性声明 本人郑重声明所呈交的学位论文煤矿采场与洞室中某些变形问题的解析 分析及锚杆计算 ,是本人在导师指导下,在中国矿业大学攻读学位期间进行的 研究工作所取得的成果。据我所知,除文中已经标明引用的内容外,本论文不包 含任何其他个人或集体已经发表或撰写过的研究成果。 对本文的研究做出贡献的 个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由 本人承担。 学位论文作者签名 年 月 日 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 万方数据 论文审阅认定书论文审阅认定书 研究生 范金成 在规定的学习年限内,按照研究生培养方 案的要求,完成了研究生课程的学习,成绩合格;在我的指导下完成 本学位论文,经审阅,论文中的观点、数据、表述和结构为我所认同, 论文撰写格式符合学校的相关规定, 同意将本论文作为学位申请论文 送专家评审。 导师签字 年 月 日 万方数据 致谢致谢 本论文是在我的导师蒋斌松教授的悉心指导下完成的。 师从三载, 收获颇丰, 在此,我谨向蒋老师致以深深地谢意。感谢蒋老师把国际经济与贸易出身的我领 入到岩体工程领域,给我提供地铁、隧道和煤矿实习机会;感谢蒋老师给我参加 学术研讨会的机会;感谢蒋老师在学术研究方向、课题研究过程中给予的悉心指 导。蒋老师严肃的科学态度,严谨的治学精神,精益求精的工作作风,深深地感 染和激励着我,使我终身受益。 感谢力学与建筑工程学院靖洪文教授、 李元海教授、 韩立军教授、 邵鹏教授、 吴晓锁副教授、王迎超副教授、蔚立元老师在论文选题过程中给予的宝贵意见; 感谢张强老师在 MATLAB 编程中给予的指导;感谢中国矿业大学数学系刘文斌教 授、王海军教授、陈太勇副教授,力学系茅献彪教授、杨静副教授、李毅副教授 等在我旁听学习过程中给予的指导,使我扎实了基础;感谢华北水利水电大学孙 瑞民教授在学习和生活中给予的关心和帮助; 感谢上海交通大学葛修润院士和张 振南副教授给予我继续深造的机会。 感谢课题组冯强博士、王立平博士、陈首君硕士、杜石文硕士、张明臣硕士、 张翼硕士、范佳俊硕士、胡传鹏硕士、王凯硕士、吕华剑硕士、寇廷君硕士、王 露硕士、何海波硕士以及同窗贾勐硕士、刘备硕士、柳家凯硕士、王琳硕士等在 日常生活和学习过程中给予的关心和帮助, 与他们的友谊是我研究生生涯最大的 收获之一。 感谢一直默默奉献、敬爱的父母,祝他们身体健康,笑口常开;感谢姐姐和 姐夫在生活中的帮助和支持,祝他们工作顺利;感谢活泼可爱的杨珺博小朋友给 我带来的快乐,希望他健健康康、快快乐乐地成长,将来为祖国建设添砖加瓦; 感谢陪伴我八年、漂亮可爱、一起奋斗的女朋友赵培培硕士,希望她顺利进入上 海交通大学深造、开开心心每一天 最后衷心感谢在百忙之中评阅论文的各位专家。 万方数据 I 摘摘 要要 煤矿开采过程中经常遇到厚硬顶板,坚硬顶板悬而不落,形成大面积空顶, 且聚集大量弹性能,一旦发生断裂或滑移将产生非常大的震动波,给采场乃至矿 井造成非常严重的破坏,确定和控制上覆岩层、特别是坚硬顶板的断裂步距是采 矿设计和岩层控制的基础;地下球形结构,如矿山竖井球形马头门、箕斗装载洞 室、地下球形贮仓、地下油库等日渐增多,对球形洞室围岩变形及稳定性的研究 显得愈发重要;煤矿为了高产高效,采区巷道普遍采用大断面矩形形状且沿煤层 布置,煤层相对于上覆岩层强度较弱,煤帮常出现较大范围的破裂、破坏现象, 严重威胁巷道的稳定和安全生产,有效控制复合顶板和煤巷两帮的稳定,减小围 岩变形,提高围岩稳定性,已经成为确保煤矿安全生产的关键。 针对以上问题,开展了以解析分析为主的研究,取得的主要成果如下 (1)对于采场坚硬顶板断裂步距确定问题,根据关键层理论,获得了基于 弹性地基梁模型的老顶岩层弯曲挠度和内力弯矩的解析计算式; 通过分析在不同 岩层和煤层条件下岩梁弯矩的分布特征,确定岩梁断裂发生在梁中或煤壁内;得 到了岩梁在煤壁内断裂后改变的内力表达式研究成果可为确定老顶岩梁初次、 周期断裂步距提供理论依据。 (2)对于球形洞室变形及稳定问题,通过采用 k 次塑性流动和脆性跌落近 似逼近岩石峰后的非线性应变软化行为, 将球形洞室围岩的塑性区划分为 k 个同 心球壳, 引入 Γi表示第 i 球壳内的围岩表征点处的塑性剪应变, 根据 Hoek-Brown 准则和非关联流动法则得到了基于 Γi的球形洞室围岩塑性半径求解方程组。当 各球壳的塑性剪应变 Γi取值足够小(Γi≤0.00125)时,脆塑性逼近形式的应变 软化模型退化为弹脆性模型;当 Γi取值较大(Γi≥0.1)时,模型退化为理想弹 塑性模型。围岩出现破裂区时,弹性模量的软化程度对洞壁位移影响最大,破裂 区半径次之,对塑性区半径的影响相对最小。计算结果可为地下球形洞室的设计 与支护提供理论依据,也可对有限元等数值计算结果进行检验。 (3)对于巷道复合顶板离层控制及煤巷侧帮加固问题,获得了上覆水平层 状岩层的矩形巷道顶板锚杆预紧力弹性计算公式, 为锚杆预紧力的确定提供理论 依据。根据岩层控制关键层理论和岩土(体)稳定理论,得到了基于弹性地基梁 模型的煤帮锚杆加固力的计算公式,为侧帮锚杆设计提供理论依据。 该论文有图 27 幅,表 8 个,参考文献 89 篇。 关键词关键词矿业工程;断裂步距;球形洞室;锚杆;解析计算 万方数据 II Abstract Thick and hard roofs are often encountered in the process of coal mining, and instead of fracturing they often remain steady in terms of a large area of strata that are unsupported. The breakage or slippage of hard roofs, which have gathered a large amount of elastic energy, will generate very large shock waves, causing severe damage to stopes and even mines. The identification and control of fracture interval of the overlying strata, especially hard roofs, is the basis for mining design and strata control; It has become essential to study the surrounding rock deation and failure of spherical caverns as more and more spherical structures such as spherical ingates of vertical shaft, skip loading caverns, spherical storages, underground oil cellars are constructed. For high production and efficiency, roadways at mining area are generally arranged along coal seams with large rectangular section. Due to coal seams which are of lower strength and poorer stability compared with the overlying strata, large scale of rupture in sidewalls often occur, which has always been great threat to coal roadways stability and safety. To ensure coal mine safety production, it has been critical to control the deation of complex roofs and sidewalls and improve surrounding rock stability. To solve above problems, related researches have been carried out and the main progresses are as follows 1 Based on elastic foundation beam model, analytical solutions to the deflection and bending moment of main roof strata are proposed, and the maximum bending moment values in rock beams under various rock strata conditions as well as their positions are analyzed, through which we can conclude that rock beams fracture either in the middle or in coal sidewalls. Besides, the varied internal force when rock beams fracture in coal sidewalls is calculated. This study can provide a theoretical basis for the determination of the initial and periodical fracture interval of main roof. 2 The strain-softening process of rock media after peak-load is simplified into k plastic flows and brittle falls, and the plastic zone of surrounding rock is divided into k spherical shells accordingly; The physico-mechanical parameters of each spherical shell is supposed to be the function of Γi, denoting the plastic strain values of characteristic points in each spherical ring. Based on the Hoek-Brown criterion and non-associated flow rule, equations of surrounding rock deation are set up according to Γi. Numerical examples show that the rock strain-softening model proposed in this paper will be the elastic-perfectly plastic model if Γi is sufficiently 万方数据 III low, and be the brittle-plastic model if Γi is large enough; when rupture zone occurs in surrounding rock, the linear degradation of elastic modulus will have a great influence on the displacement of free surfaces, but less influence on insoftening radius and rupture radius relatively. This study can provide a theoretical basis for the support desin of underground engineering. 3 Considering rectangular roadways with horizontal layered rocks, the bolt reinforcement force required to resist separation and friction sliding between the roof layers is calculated based on the elastic rock beam model, which provides a quantitative basis for the determination of bolt pre-tightening force; According to the key strata theory in ground control and elastic foundation beam, the analytical solution to pressure loading on coal roadway sidewalls is proposed and the rupture range is determined. Then, based on the stability theory of geotechnical engineering, the anchoring force required for maintaining sidewall stability is further studied, which can provide a theoretical basis to determine supporting parameters of coal sidewalls. Keywords mining engineering; fracture interval; spherical caverns; bolt; analytical calculation 万方数据 IV 目目 录录 摘要摘要 ................................................................................................................ I I 目录目录 .............................................................................................................. IVIV 图清单图清单 ...................................................................................................... VIIIVIII 表清单表清单 ............................................................................................................ X X 变量注释表变量注释表 .................................................................................................. XIXI 1 1 绪论绪论 ............................................................................................................ 1 1 1.1 课题的提出及研究意义............................................ 1 1.2 国内外研究现状.................................................. 2 1.3 课题主要研究内容................................................ 9 2 2 基于弹性地基梁模型的老顶岩层断裂步距解析计算基于弹性地基梁模型的老顶岩层断裂步距解析计算 .................................. 1010 2.1 引言........................................................... 10 2.2 弹性地基梁模型................................................. 10 2.3 基本方程及定解条件............................................. 11 2.4 岩梁变形及内力弯矩的确定....................................... 12 2.5 岩梁在煤壁内断裂后弯矩变化计算................................. 16 2.6 岩梁初次断裂步距的确定......................................... 18 2.7 算例分析....................................................... 19 2.8 小结........................................................... 20 3 3 基于基于 HoekHoek- -BrownBrown 准则的球形洞室围岩应变软化弹塑性分析准则的球形洞室围岩应变软化弹塑性分析 ...................... 2121 3.1 引言........................................................... 21 3.2 计算模型....................................................... 21 3.3 基本理论和方程................................................. 22 3.4 围岩应力和变形................................................. 23 3.5 各球壳半径的确定............................................... 25 3.6 算例分析....................................................... 28 3.7 小结........................................................... 37 4 4 煤巷锚杆设计计算煤巷锚杆设计计算 .................................................................................... 3939 4.1 引言........................................................... 39 4.2 煤巷复合顶板锚杆预紧力计算..................................... 39 4.3 煤巷侧帮锚杆设计计算........................................... 44 4.4 小结........................................................... 50 万方数据 V 5 5 结论与展望结论与展望................................................................................................ 5151 5.1 结论........................................................... 51 5.2 展望........................................................... 52 参考文献参考文献 ...................................................................................................... 5353 附录附录 A A .......................................................................................................... 5858 作者简历作者简历 ...................................................................................................... 6161 学位论文原创性声明学位论文原创性声明 .................................................................................... 6262 学位论文数据集学位论文数据集 ............................................................................................ 6363 万方数据 VI Contents Abstract........................................................................................................................ II Content ........................................................................................................................VI List of Figure ...........................................................................................................VIII List of Table ................................................................................................................. X List of Variables..........................................................................................................XI 1 Introduction ............................................................................................................... 1 1.1 Problem Introduction and Research Significance .................................................... 1 1.2 Domestic and Overseas Research Status ................................................................. 2 1.3 Main Research Contents .......................................................................................... 9 2 Analytical Calculation of Main Roof Fracture Length based on Elastic Foundation Beam Model ........................................................................................... 10 2.1 Preface.................................................................................................................... 10 2.2 Elastic Foundation Beam Model............................................................................ 10 2.3 Basic Equations and Solution Conditions .............................................................. 11 2.4 Solution of the Rock Beam Deation and Internal Force ................................ 12 2.5 Calculation of the Varied Bending Moment when Rock Beam Fractures within Coal Wall...................................................................................................................... 16 2.6 Determination of Initial Fracture Length ............................................................... 18 2.7 Example of an Engineering Calculation ................................................................ 19 2.8 Summary ................................................................................................................ 20 3 Elastoplastic Analysis of a Spherical Cavity in Strain-softening Rock Masses Based on Hoek-Brown Criteria ................................................................................ 21 3.1 Preface.................................................................................................................... 21 3.2 Calculation Model.................................................................................................. 21 3.3 Basic Theory and Equations .................................................................................. 22 3.4 Stress and Deation in Surrounding Rock Masses........................................... 23 3.5 Determination of Each Spherical Shell .................................................................. 25 3.6 Analysis of Numerical Examples ........................................................................... 28 3.7 Summary ................................................................................................................ 37 4 Calculation of Bolt Design in Coal Roadway ....................................................... 39 4.1 Preface.................................................................................................................... 39 4.2 Calculation of bolt pretension for complex roof in coal roadway ......................... 39 万方数据 VII 4.3 Calculation of bolt design for sidewall in coal roadway........................................ 44 4.4 Summary ................................................................................................................ 50 5 Conclusions and Prospects ..................................................................................... 51 5.1 Conclusions ............................................................................................................ 51 5.2 Prospects ...................................................