防控李村煤矿1301工作面上隅角瓦斯超限的高抽巷布置方式优选研究.pdf
√。 太原理工大学硕士研究生学位论文 I 防控李村煤矿 1301 工作面上隅角瓦斯超限的高抽巷布置方式优 选研究 摘 要 随着综合机械化采煤技术的不断发展, 工作面开采强度不断加大, 使工 作面落煤瓦斯急剧升高, 同时也使邻近层煤层卸压瓦斯涌出量急剧增加, 造 成采空区瓦斯大量涌出, 工作面上隅角瓦斯超限, 严重威胁了工作面的安全 生产。高抽巷瓦斯抽采技术是预防工作面上隅角瓦斯超限的一种行之有效 的技术手段, 高抽巷的位置参数、布置方式直接影响着瓦斯抽采效果,由 于高抽巷工程量大、施工时间长, 无法在现场进行对比试验,随着数值模拟 技术的应用, 使得某些不能在现场完成的试验, 可以通过数值模拟的方法来 完成。 高抽巷的布置方式有两种 走向高抽巷和倾向高抽巷, 两种高抽巷的布 置参数(诸如位置、布置间距、深入裂隙带长度)对瓦斯抽采效果、高抽巷 的工程量与工期均有直接影响, 两种高抽巷的抽采效果、 工程量及工期的对 比与优选对工作面瓦斯防治具有非常重要的意义。 本论文以李村煤矿 1301 工作面为研究对象,首先对走向高抽巷布置参 数(距回风顺槽水平距离、距煤层底板垂直距离)进行优化,得出最佳走向 高抽巷; 将优选后的最佳垂高沿用到倾向高抽巷, 通过对倾向高抽巷布置参 数(深入裂隙带长度、布置间距)的优选,得出最佳倾向高抽巷。最后,在 确保工作面上隅角瓦斯浓度处于安全范围之内的情况下对最佳走向高抽巷 与最佳倾向高抽巷进行优选。通过对比两种不同高抽巷布置方式下瓦斯抽 太原理工大学硕士研究生学位论文 II 采效果、施工成本与工作面准备时间,来指导 1301 工作面的实际高抽巷布 置方式。通过理论分析与数值模拟重点对以下内容进行了研究 (1)最佳走向高抽巷的优选。综合数值模拟和理论计算结果确定出裂 隙带高度区间为 27.349m,距回风巷水平距离为 18.1m51.3m。初始假设 高抽巷距离回风顺槽距离为 30 m,分别模拟高抽巷距离底板 30m、34m、 38m、 42m 时高抽巷抽采口瓦斯浓度及上隅角瓦斯浓度变化, 当垂直距离为 38m 时, 抽采效果最佳。 然后分别模拟高抽巷距离回风巷水平距离为 20m、 30m、40m、50m 时瓦斯的抽采效果,对比抽采参数发现在距离回风巷 30m 处时,高抽巷抽采瓦斯浓度达 10.33,上隅角瓦斯浓度为 0.752,因此将 高抽巷距离回风巷最佳平距定为 30m。综上,高抽巷最佳布置位置为距离 底板 38m,距离回风巷 30m。 (2)最佳倾向高抽巷的优选。将走向高抽巷优选后的最佳高度沿用到 倾向高抽巷, 对倾向高抽巷深入裂隙带不同距离进行优选, 确定出深入裂隙 带 30m 时抽采效果最好,根据倾向高抽巷的具体布置位置,计算出同等工 程量下一条走向高抽巷可置换 10 条倾向高抽巷,分别模拟间距为 166m、 144m、 122m、 100m 时倾向高抽巷瓦斯抽采效果。 对比发现, 当间距为 144m 时,抽采纯量为 30.75m3/min,工作面上隅角瓦斯浓度处于安全范围之内, 因此将倾斜高抽巷合理间距确定为 144m。 (3)最佳走向高抽巷与最佳倾向高抽巷的优选。对比优选后的最佳走 向高抽巷与最佳倾向高抽巷, 量化分析不同抽采参数, 二者上隅角瓦斯浓度 不相上下, 但是倾向高抽巷的抽采纯量明显高于走向高抽巷, 每分钟抽采纯 量提高了 8m3, 且采空区瓦斯浓度整体低于走向高抽巷。 对比二者施工成本, 太原理工大学硕士研究生学位论文 III 倾向高抽巷可以节省经济支出 43,采用倾向高抽巷可使工作面准备时间 缩短 7 个月,大大缓解了综采掘进交替紧张问题,从抽采效果和经济成本 考虑,李村矿 1301 工作面更适合布置倾向高抽巷。 关键词高抽巷,布置参数,上隅角瓦斯浓度,数值模拟,抽采纯量 太原理工大学硕士研究生学位论文 IV 太原理工大学硕士研究生学位论文 V OPTIMIZATION STUDY ON THE LAYOUT OF HIGH DRAINAGE ROADWAY FOR PREVENTION AND CONTROL OF GAS OVERRUN IN THE CORNER OF 1301 WORKING FACE OF LICUN COAL MINE ABSTRACT With the continuous development of comprehensive mechanized coal mining technology, the working face mining intensity increasing, make a dramatic increase in working face of coal gas, but also make the adjacent layer coal unloading gas emission increased sharply, causing a lot of goaf, corner gas often overrun on the working plane, a serious threat to the safety production of working face. High alley pumping gas extraction technology is prevention of top corner gas overrun an effective technical means, the higher the location of the alley pumping parameters, arrangement, directly affects the effect of the gas extraction, due to high alley pumping large quantities, construction time, not in the field contrast test, with the application of numerical simulation technology, make some test that can not be completed at the scene, can be finished by the of numerical simulation. High alley pumping arrangement has two kinds towards high alley pumping and tend to smoke lane, two high drainage layout parameters such as location, 太原理工大学硕士研究生学位论文 VI arrangement spacing and in-depth fissure zone length of the gas extraction effect, high alley pumping are directly affect the quantity and time limit for a project, two high alley pumping the extraction effect of comparison and optimization, quantity and time limit for a project have very important sense to prevention and control of working face gas. In this paper, the 1301 working face of licun coal mine is taken as the research object. Firstly, the layout parameters horizontal distance from the return air channel and vertical distance from the floor of the coal seam of the high drawing roadway in the strike are optimized to obtain the optimal high drawing roadway in the strike. The optimum vertical height was extended to the inclined high drainage roadway after optimization, and the optimum layout parameters length of deep fracture zone and spacing of the inclined high drainage roadway were selected to obtain the optimal inclined high drainage roadway. Finally, under the condition of ensuring that the gas concentration in the corner of the working face is within the safe range, the optimum direction high drainage roadway and the optimum inclination high drainage roadway are optimized. By comparing the gas extraction effect, construction cost and working face preparation time of two different high drainage roadway layout modes, the actual high drainage roadway layout mode of 1301 working face is guided. Through theoretical analysis and numerical simulation, this paper mainly does the following work 1 Optimum selection of high extraction roadway. The height range of the fracture zone is 27.3-49m and the horizontal distance from the return air lane is 太原理工大学硕士研究生学位论文 VII 18.1m-51.3m. Initially, assuming that the distance between the high extraction roadway and the return air along the trough is 30 m, the gas concentration at the extraction mouth and the gas concentration at the upper corner of the high extraction roadway are simulated respectively when the distance between the high extraction roadway and the floor is 30 m, 34m, 38m and 42m. When the vertical distance is 38 m, the extraction effect is the best. Then, the effect of gas extraction is simulated when the horizontal distance between high extraction roadway and return air roadway is 20 m, 30 m, 40 m and 50 m respectively. When the distance is 30m from the return air lane, the gas concentration of high extraction Lane reaches 10.33, and the gas concentration of upper corner is 0.752. To sum up, the optimum location of high extraction roadway is 38m from floor and 30m from return air roadway. 2 Optimum selection of high suction roadway with the best inclination. The optimum height of high-inclined Roadway after optimization is applied to high- inclined roadway, and the different distances of high-inclined roadway in deep fissure zone are optimized. The best extraction effect is determined when the deep fissure zone is 30m. According to the specific layout location of high-inclined roadway, 10 high-inclined roadways can be replaced by one high-inclined roadway under the same amount of engineering, and the simulation spacing is 166m, 144m, 122m and 10m, respectively. Gas drainage effect in high-inclined roadway at 0 M. It is found that when the distance is 144m, the extraction purity is 30.75m3/min, and the gas concentration in the upper corner of the working face 太原理工大学硕士研究生学位论文 VIII is within the safe range. Therefore, the reasonable distance of inclined high extraction roadway is 144m. 3 Optimum selection of high-drawing roadway with the best direction and the best inclination. Comparing the best direction high-extraction roadway and the best tendency high-extraction roadway, quantitatively analyzing different extraction parameters, the gas concentration in the upper corner of the two roadways is not the same, but the extraction purity of the inclined high-extraction roadway is obviously higher than that of the trend high-extraction roadway, the extraction purity per minute is increased by 8 m3.Comparing the construction cost of the two s, the economic expenditure can be saved by 43 by using the inclined high extraction roadway, and the preparation time of the working face can be shortened by 7 months by using the inclined high extraction roadway. Considering the extraction effect and economic cost, the 1301 working face of Licun Mine is more suitable for the layout of high-inclined roadways. KEY WORDS high extraction roadway, layout parameters, upper corner gas concentration, numerical simulation, extraction purity 太原理工大学硕士研究生学位论文 IX 目 录 摘 要 ........................................................................................................................................... I ABSTRACT .............................................................................................................................. V 第一章 绪论 .............................................................................................................................. 1 1.1 研究背景及意义 ........................................................................................................... 1 1.2 国内外研究现状 ........................................................................................................... 2 1.2.1 采空区瓦斯渗流理论的研究现状 .................................................................... 2 1.2.2 CFD 技术及采空区流场数值模拟研究应用现状 ............................................ 5 1.2.3 高抽巷数值模拟研究现状 ................................................................................ 6 1.3 主要研究内容 ............................................................................................................... 6 1.4 研究技术路线 ............................................................................................................... 7 第二章 采空区覆岩裂隙演化规律与采空区多孔介质理论 .................................................. 9 2.1 采空区覆岩采动裂隙演化特征 ................................................................................... 9 2.1.1 覆岩采动裂隙的形成与发育 ............................................................................ 9 2.1.2 采动覆岩与离层裂隙的分布 .......................................................................... 11 2.2 综放面采空区岩体区带划分 ..................................................................................... 11 2.2.1 横三区碎胀特性 .............................................................................................. 11 2.2.2 竖三带高度计算 .............................................................................................. 13 2.3 多孔介质理论及相关特性分析 ................................................................................. 15 2.3.1 孔隙率与有效孔隙率 ...................................................................................... 15 2.3.2 比面 .................................................................................................................. 16 2.3.3 渗透率与渗透系数 .......................................................................................... 16 2.3.4 压缩性 .............................................................................................................. 17 2.4 本章小结 ..................................................................................................................... 17 第三章 1301 工作面采空区裂隙带高度确定 ....................................................................... 19 3.1 1301 工作面概况 ........................................................................................................ 19 3.2 FLAC3D软件简介及建模原则与方法 ....................................................................... 20 3.2.1 FLAC3D概述 ..................................................................................................... 20 3.2.2 模型建立原则及模拟方法 .............................................................................. 20 太原理工大学硕士研究生学位论文 X 3.3 模型建立 ..................................................................................................................... 20 3.3.1 模型物理力学参数与几何参数 ...................................................................... 20 3.3.2 模型初始条件与边界条件设置 ...................................................................... 21 3.3.3 1301 工作面模型开采步距设置 ...................................................................... 22 3.4 数值模拟结果分析 ..................................................................................................... 22 3.4.1 覆岩塑性破坏规律分析 ................................................................................... 22 3.4.2 覆岩竖向应力卸压规律分析 ........................................................................... 25 3.5 裂隙带高度现场验证 ................................................................................................. 27 3.6 本章小结 ..................................................................................................................... 28 第四章 1301 工作面瓦斯涌出分析与高抽巷瓦斯抽采技术 ............................................... 31 4.1 裂隙带内瓦斯运移聚集特征 ..................................................................................... 31 4.1.1 瓦斯在裂隙带内的升浮 ................................................................................... 31 4.1.2 瓦斯在裂隙带内的扩散 ................................................................................... 31 4.1.3 瓦斯在采空区及裂隙带内的运移聚集特征 ................................................... 32 4.2 1301 工作面瓦斯涌出源分析与预测 ........................................................................ 33 4.2.1 1301 工作面瓦斯涌出来源分析 ...................................................................... 33 4.2.2 采空区瓦斯涌出影响因素分析 ...................................................................... 34 4.2.3 1301 工作面瓦斯涌出量预测 .......................................................................... 34 4.3 高抽巷瓦斯抽采技术 ................................................................................................. 36 4.3.1 高抽巷瓦斯抽采原理 ...................................................................................... 37 4.3.2 高抽巷水平距离分析 ...................................................................................... 38 4.3.3 高抽巷垂直高度分析 ...................................................................................... 39 4.4 本章小结 ..................................................................................................................... 40 第五章 1301 工作面走向高抽巷位置参数的优选 ............................................................... 41 5.1 CFD 模拟软件 FLUENT简介 ...................................................................................... 41 5.1.1 Fluent 基本结构程序及相互关系 .................................................................... 41 5.1.2 Fluent 求解过程 ................................................................................................ 42 5.2 控制微分方程的建立 ................................................................................................. 43 5.2.1 基本假设条件 .................................................................................................. 43 太原理工大学硕士研究生学位论文 XI 5.2.2 采空区气体流动方程 ...................................................................................... 44 5.3 高抽巷抽采的必要性 ................................................................................................. 46 5.3.1 物理模型的构建及网格划分 .......................................................................... 46 5.3.2 采空区模型参数及边界条件的设置 .............................................................. 47 5.3.3 采场瓦斯原始分布状态 .................................................................................. 50 5.4 不同位置走向高抽巷抽采效果模拟分析 ................................................................. 51 5.4.1 高抽巷最佳垂距确定 ...................................................................................... 51 5.4.2 高抽巷最佳平距确定 ...................................................................................... 56 5.4.3 最佳位置处抽采效果分析 .............................................................................. 60 5.5 走向高抽巷合理层位现场验证 ................................................................................. 60 5.6 本章小结 ....................................................................