常村煤矿3#煤层上部砂岩富水性地球物理综合预测研究.pdf
工程硕士学位论文 常村煤矿 3煤层上部砂岩 富水性地球物理综合预测研究 Study on geophysical prediction of water-bearing roof sandstone of No.3 Coal in Changcun Coal Mine 作 者杜海舰 导 师陈同俊 教授 中国矿业大学 二○一九年十月 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 万方数据 中图分类号 P631.4 学校代码 10290 UDC 密 级 公开 中国矿业大学 工程硕士学位论文 常村煤矿 3煤层上部砂岩 富水性地球物理综合预测研究 Study on geophysical prediction of water-bearing roof sandstone of No.3 Coal in Changcun Coal Mine 作 者 杜海舰 导 师 陈同俊 教授 申请学位 工学硕士 培养单位 资源与地球科学学院 学科专业 地质工程 研究方向 应用地球物理 答辩委员会主席 潘冬明 教授 评 阅 人 万方数据 致谢致谢 离开母校已经十余年,但是母校这份情怀始终没有变,怀着这份感情和对自 身专业水平的提升要求,我再次踏入母校,在职攻读硕士学位。再次进入母校学 习生活,还是依然怀念和激动,但是转眼八年,时间如白驹过隙,倏忽而逝。在 即将过去的硕士生涯中,无论在学习上还是生活上,老师、同学、亲人和朋友都 给予了我极大的关怀与帮助,值此毕业之际,特向他们致以最诚挚的谢意 本论文是在陈同俊教授和崔若飞教授的悉心指导下完成的。 从论文选题到论 文撰写编排的每个环节都渗透着两位老师的精心指导和耐心指教。 在论文完成过 程中,陈老师针对我所遇到的方法理论问题,为我指点迷津、开拓思路,正是这 细致入微的指导和关怀才使得本论文得以顺利完成。 本论文的顺利完成还离不开 崔若飞教授的关心和指导。从研究过程到论文选题到撰写,崔老师都给予了我无 私的帮助和大量的建设性意见。陈老师和崔老师高屋建瓴的研究思路、渊博的专 业知识、严谨缜密的治学态度,都为我树立了光辉典范,而他们的谆谆教诲也使 我终生受益。在此,谨向我的导师---陈同俊教授以及时刻关心指导我的崔若飞教 授致以崇高的敬意和由衷的感谢。 同时,还要感谢资源学院地质和地球物理相关的的各位老师,包括我留校任 教的同学们。多年来,他们默默地传授知识,并为我提供了许多学习和研究课题 的知识和机会。我深深地感到我的每一点收获都与他们的无私奉献是分不开的, 在此向他们表示深深的感谢。 另外,我要感谢我的师兄赵虎、黄亚平、毛欣荣、李东会,我的同学杨磊、 乔伟、申建、刘仰光、须振华、刘武、高级、莫亮台、周志明、陈顶峰、陶文鹏、 蔡文芮等。他们在平时的工作、工作、学习、研究中,为我提供了很多帮助,也 为我提供了宝贵的研究资料和建议,提高了我的理论和实践水平,从而也帮助我 快速高效的完成了论文。他们的支持、帮助和鼓励使我愉快充实地度过了这几年 的工程硕士学时时光。 此外,还要特别感谢我的原在校辅导员王梦倩老师、王守刚老师以及我的班 主任刘志新教授,在我这几年的学习、工作和完成论文期间对我的大力的、无私 的帮助。 最后,我还要感谢我的父母、亲戚和朋友。无论在什么时候,他们始终都在 背后支持我,鼓励我,给我坚持不懈的勇气。 万方数据 I 摘摘 要要 针对潞安矿区常村煤矿 3煤层上部砂岩的含水性问题, 以矿区地质构造特征 为基础以及多种物探手段为理论依据,基于地震资料和测井资料,利用 AVO 反 演、波阻抗反演和概率神经网络反演等多种手段,科学地预测研究了该区 3煤 层顶板的含水性。将以上方法应用到常村煤矿,根据实际测井数据和地震数据等 资料,建立和适合实际情况的理论模型,成功地对 3煤层顶部 110 米范围的砂 岩含水特征进行了预测研究,预测结果与实际地质情况吻合。 对于顶板砂岩富水性的预测研究, 以潞安矿区常村煤矿为研究区, 对 3煤层 顶板砂岩进行预测。该研究区顶板砂岩富水性的影响因素主要包括砂岩厚度、砂 岩含水性和砂岩孔隙度等方面。以测井数据和拟密度曲线反演技术为基础,对砂 岩厚度进行了预测研究;利用密度测井曲线和自然伽马测井曲线的数据,结合井 旁波阻抗数据,利用概率神经网络反演技术,对全区顶板砂岩的孔隙度进行了综 合预测研究;利用多种测井数据,如密度、自然伽马、补充中子、视电阻率、自 然电位等测井数据曲线的识别技术和地震 AVO 反演技术,结合多组测井数据和 地震波属性数据,对该区顶板砂岩含水性进行了不同视角的预测研究。 本文砂岩厚度的预测方法主要是将反演数据体变换为密度数据体,根据砂岩 和泥岩所占的厚度百分比,计算出各段地层中砂岩层的厚度,后期与钻孔实际揭 露的砂岩实际厚度进行对比,发现本次对各段砂岩层厚度的预测精度较高。通过 反演获得了各段砂岩孔隙度和富水性分布成果, 后经过测井曲线计算的孔隙度的 对比,发现本次孔隙度预测的精度较高,本区 3煤层顶部砂岩富水区的预测较 准确。 本文以二叠系山西组3煤层的顶部110m范围内的富水性特征研究为着眼点, 利用多种测井数据和地震属性等多种类型数据的综合预测研究方法, 科学地预测 了该区 3煤层的顶板水赋存情况,该预测研究成果为潞安矿区 3煤层乃至全矿 区的煤层开采提供了可靠的水文地质依据和可借鉴的砂岩富水性研究方法。 该论文有图 85 幅,表格 5 个,参考文献 103 篇。 关键词关键词砂岩;富水性;测井曲线;拟密度曲线反演; AVO 反演;概率神经网 络 万方数据 II Abstract According to the water content of the upper sandstone of No.3 coal seam in Changcun Coal Mine of Luan Mining Area, based on the geological structure characteristics of the mining area and various geophysical exploration s, based on seismic data and logging data, AVO inversion and impedance inversion are used. And the probabilistic neural network inversion and other means, scientifically predicted the water content of the 3 coal seam roof in the area. Applying the above to Changcun Coal Mine, based on the actual logging data and seismic data, A theoretical model suitable for the actual situation is established, and the water cut characteristics of 110m sandstone on the top of no.3 coal seam are predicted. The prediction results are predicted. It is highly consistent with the actual geological conditions. For the prediction study of the water-richness of the roof sandstone, the Changcun Coal Mine in the Luan Mining Area was used as the research area to predict the sandstone of the 3 coal seam roof. The factors affecting the water-richness of the roof sandstone in the study area include sandstone thickness, sandstone water content and sandstone porosity. Based on logging data and pseudo-density curve inversion technology, the sandstone thickness is predicted. Using the data of density logging curve and natural gamma logging curve, combined with well-side wave impedance data, using probabilistic neural network inversion Technology, comprehensive prediction of the porosity of the roof sandstone in the whole area; identification techniques and earthquakes using a variety of logging data such as density, natural gamma, supplemental neutrons, apparent resistivity, natural potential, etc. AVO inversion technique, combined with multiple sets of logging data and seismic wave attribute data, predicted the water content of the top sandstone in this area from different perspectives. The prediction of sandstone thickness in this paper is mainly to trans the inversion data volume into density data volume. According to the percentage of thickness of sandstone and mudstone, the thickness of sandstone layer in each section is calculated, and the actual thickness of sandstone actually exposed in the later stage is drilled. For comparison, it is found that the prediction accuracy of the thickness of each sandstone layer is high. Through the inversion, the porosity and water-rich distribution of sandstones were obtained. After comparing the porosity 万方数据 III calculated by the logging curve, it was found that the accuracy of the porosity prediction was higher. The sandstone water-rich area at the top of the 3 coal seam in this area was The forecast is more accurate. In this paper, the water-rich characteristics of the top 110m of the 3 coal seam of the Permian Shanxi ation are studied. The comprehensive prediction using various types of data such as logging data and seismic attributes is used to scientifically predict the area. The occurrence of roof water in the 3 coal seam, the prediction research results provide a reliable hydrogeological basis for the coal seam mining in the 3 coal seam and even the whole mining area in the Luan mining area and the sandstone water-rich research . The paper has 85 pictures, 5 tables, and 103references. Key words sandstone; water-rich; logging curve; pseudo-density curve inversion; AVO inversion; probabilistic neural network 万方数据 IV 目目 录录 摘要摘要ⅠⅠ 目录目录IIII 图清单图清单VIIIVIII 表清单表清单XIIIXIII 变量注释表变量注释表XIVXIV 1 1 绪论绪论 ........................................................................................................................ 1 1 1.1 选题目的及意义 ......................................................................................................... 1 1.2 国内外研究现状 ......................................................................................................... 2 1.3 主要研究内容与技术路线........................................................................................ 8 1.4 主要研究成果 ........................................................................................................... 11 2 2 地球物理预测理论基础及研究区地质概况地球物理预测理论基础及研究区地质概况 ........................................................ 1212 2.1 测井曲线识别技术 ............................................. 12 2.2 拟密度曲线反演预测技术 ....................................... 15 2.3 概率神经网络预测技术 ......................................... 17 2.4 AVO 反演预测技术 ............................................. 25 2.5 研究区地质构造特征 ........................................... 28 2.6 3煤层顶板砂岩赋存特征 ....................................... 33 3 3 研究区研究区 33煤层上部砂岩含水性地球物理预测煤层上部砂岩含水性地球物理预测 .................................................. 3838 3.1 顶板砂岩及其含水性测井曲线识别 ............................... 38 3.2 基于拟密度曲线反演技术的砂岩层厚度预测 ....................... 43 3.3 基于拟密度曲线反演技术的砂岩含水性预测 ....................... 53 3.4 基于概率神经网络技术的砂岩孔隙度预测 ......................... 58 3.5 基于 AVO 反演技术的砂岩含水性预测 ............................. 67 3.6 小结 ......................................................... 72 万方数据 V 4 4 研究区研究区 33煤层顶板砂岩富水性研究成果煤层顶板砂岩富水性研究成果 .......................................................... 7373 4.1 各段砂岩层厚度研究成果 ....................................... 73 4.2 各段砂岩孔隙度和富水性研究成果 ............................... 79 4.3 小结 ......................................................... 84 5 5 结论结论 ...................................................................................................................... 8585 5.1 主要研究成果 ................................................. 85 5.2 存在问题与建议 ............................................... 85 参考文献参考文献 .................................................................................................................. 8787 作者简历作者简历 .................................................................................................................. 9393 学位论文原创性声明学位论文原创性声明 .............................................................................................. 9595 学位论文数据集学位论文数据集 ...................................................................................................... 9696 万方数据 VI Contents Abstract...ⅠⅠ Contents... II List of Figures..VIII List of TablesXIII List of Variables..XIV 1 Introduction ............................................................................................................... 1 1.1 Purpose and Significance of the Subject ................................................................... 1 1.2 Research Reviews ........................................................................................................ 2 1.3 Main Research Contents .............................................................................................. 8 1.4 The main research results .......................................................................................... 11 2 Theoretical basis of geophysical prediction and geological overview of the study area .............................................................................................................................. 12 2.1 Well logging based identification .............................................................. 12 2.2 Inversion based prediction with reconstructed density log ..................... 15 2.3 Probabilistic neural network based prediction ......................................... 17 2.4 AVO inversion based prediction ................................................................ 25 2.5 Geological and structural characteristics of the research area.............................. 28 2.6 Deopsitional characteristics of 3 coal seam roof sandstone ............................... 33 3 Geophysical prediction of water-bearing roof sandstone of 3 coal in the study Area ............................................................................................................................. 38 3.1 well-log based water identification of roof ............................................................. 38 3.2 Thickness prediction of roof sandstone with reconstructed density logs ........... 43 3.3 Water Content prediction of roof sandstone with well-log constrained seismic inversion ............................................................................................................................. 53 3.4 Porosity prediction of roof sandstone with probabilistic neural network ........... 58 3.5 Water content prediction of roof sandstone with AVO inversion ....................... 67 3.6 Summary ......................................................................................................................... 72 万方数据 VII 4 Research Results of Sandstone Water Enrichment in roof sandstone of 3 Coal ...................................................................................................................................... 73 4.1 Thickness predicted Results of roof sandstone ...................................................... 73 4.2 Porosity and water enrichment results of roof sandstone...................................... 79 4.3 Summary ......................................................................................................................... 84 5 Conclusions .............................................................................................................. 85 5.1 Main Research Results .............................................................................................. 85 5.2 Problems and recommendations ............................................................................... 85 References87 Author’s Resume93 Declaration of Thesis Originality95 Thesis/Dissertation Data Collection96 万方数据 VIII 图清单图清单 图序号 图名称 页码 图 1-1 2001-2015 年煤炭产量 1 Figure 1-1 Coal production of China from 2001 to 2015 1 图 1-2 2000-2011 年煤矿水害伤亡情况 1 Figure 1-2 Casualties of mining water hazards from 2000 to 2011 1 图 1-3 煤层顶板砂岩层厚度预测技术路线 10 Figure 1-3 Technical route for predicting the thickness of the roof sandstone layer of coal seam 10 图 1-4 煤层顶板砂岩富水区预测技术路线 11 Figure 1-4 Prediction technology route for sandstone rich water area in coal seam roof 11 图 2-1 康普顿效应示意图 12 Figure 2-1 Schematic diagram of the Compton effect 12 图 2-2 三侧向测井原理 13 Figure 2-2 Three lateral logging principle 13 图 2-3 砂岩地层自然电动势示意图 14 Figure 2-3 Schematic diagram of natural electromotive force in sandstone ation 14 图 2-4 含水砂岩拟密度曲线生成 16 Figure 2-4 Water-bearing sandstone pseudo-density curve generation 16 图 2-5 合成地震记录与井旁道对比 17 Figure 2-5 Synthetic seismic record and well bypass 17 图 2-6 密度-孔隙度曲线与地震属性交会图 18 Figure 2-6 Cross-section of density-porosity curve and seismic attributes 18 图 2-7 目标测井曲线左与地震属性右 的频率差异 18 Figure 2-7 Frequency difference between the target log curve left and the seismic attribute right 18 图 2-8 不带褶积因子a与长度为 5 的褶积因子b的线性变换示意图 19 Figure 2-8 Schematic diagram of linear transation without convolution factor a and length factor 5 p 19 图 2-9 预测误差随属性个数的变化趋势 20 Figure 2-9 Trend of prediction error with the number of attributes 20 图 2-10 交叉检验示意图 23 Figure 2-10 Cross-check diagram 23 图 2-11 预测误差与整体交叉检验误差随属性个数变化图 24 Figure 2-11 Forecast error and overall cross-check error with the number of attributes 24 图 2-12 P 波入射在均匀半空间分界面上的反射和透射 25 Figure 2-12 Reflection and transmission of P wave incident on a uni half-space interface 25 图 2-13 含水砂岩和含气砂岩波阻抗交会图 27 万方数据 IX Figure 2