补连塔煤矿特厚煤层综采一次采全高覆岩破坏特征研究(1).pdf
煤炭科学研究总院 硕士学位论文 补连塔补连塔煤矿煤矿特特厚煤层综采厚煤层综采一次一次采全采全 高覆岩破坏高覆岩破坏特征特征研究研究 作者姓名作者姓名 赵立钦 学科专业学科专业 采矿工程 导师姓名导师姓名 李凤明 研究员 李宏杰 研究员 完成时间完成时间二○一八年五月十日 万方数据 China Coal Research Institute A dissertation for masters degree Study on overburden rock failure characteristics of fully mechanized mining full-height of extra thick seam in Bulianta mine Author’s NameLiqin ZHAO SpecialityMining Engineering SupervisorProf. Fengming Li Prof. Hongjie Li Finished time May 10th, 2018 万方数据 煤炭科学研究总院学位论文原创声明 本人郑重声明此处所提交的学位论文补连塔煤矿特厚煤层综采一次采全 高覆岩破坏特征研究,是本人在导师指导下,在煤炭科学研究总院攻读硕士学 位期间独立进行研究工作所取得的成果。据本人所知,论文中除已注明部分外不 包含他人已发表或撰写过的研究成果。 对本文的研究工作做出重要贡献的个人和 集体,均已在文中以明确方式注明。本声明的法律结果将完全由本人承担。 作者签名 日期 年 月 日 煤炭科学研究总院学位论文使用授权书煤炭科学研究总院学位论文使用授权书 补连塔煤矿特厚煤层综采一次采全高覆岩破坏特征研究系本人在煤炭科 学研究总院攻读学位期间在导师指导下完成的学位论文。 本论文的研究成果归煤炭科学 研究总院所有,本论文的研究内容不得以其他单位的名义发表。本人完全了解煤炭科学 研究总院关于保存、使用学位论文的规定,同意学校保留并向有关部门送交论文的复印 件和电子版本, 允许论文被查阅和借阅,同意学校将论文加入中国优秀博硕士学位 论文全文数据库和编入中国知识资源总库。本人授权煤炭科学研究总院,可以采用影 印、缩印或其他复制手段保存论文,可以公布论文的全部或部分内容。 本学位论文属于(请在以下相应方框内打√“; 保 密□,在 年解密后适用本授权书 不保密□ 作者签名 日期 年 月 日 导师签名 日期 年 月 日 万方数据 摘 要 摘摘 要要 神东矿区位于能源金三角‖的核心区, 煤炭资源储量极其丰富, 良好的煤层 赋存条件促使神东矿区优先实现煤炭资源的大规模现代化开采。 与传统开采技术 相比,现代开采技术具有一次开采工作面面积大和推进速度快的特点,再加上神 东矿区特殊的覆岩组合类型特点,导致神东矿区覆岩受采动影响更为剧烈,进而 给神东矿区各煤矿安全生产、生态环境带来严重危害,同时也给三下‖压煤开采 研究带来很多技术难题。 虽然神东矿区大部分矿井都已突破年产量千万吨难关,但是以补连塔煤矿 为代表的千万吨矿井在实现大规模高效开采的同时也面临安全开采、 矿区环境恢 复治理等诸多难题。高强度开采所引起的覆岩剧烈破坏为矿井防治水、地表建构 筑物安全带来严重威胁。最具代表性的补连塔煤矿12511工作面,实现了8m特厚 大采高的综采一次采全厚,超高的开采强度引起工作面上覆岩层的剧烈运动,导 致地表大幅变形,同时在覆岩中形成连通性较好的导水通道,再加上井田东部有 一条常年流水的乌兰木伦河,良好的矿井充水条件为补连塔煤矿12511工作面的 安全生产带来巨大的隐患。因此,研究补连塔煤矿12511工作覆岩破坏特征对于 煤矿的安全生产具有一定的指导意义。 本文以补连塔12511工作面为研究基础,采用相似材料模拟实验及UDEC数 值模拟实验对其覆岩裂隙发育、沉降变化、应力变化进行分析研究;其次采用钻 孔冲洗液漏失量观测及彩色钻孔电视观测综合分析该工作面两带‖发育高度, 并 将实测结果与神东矿区整体规律对比分析。主要获得以下结论 (1)推导顶板初次及周期垮落步距计算公式,并用于补连塔煤矿12511工作 面顶板垮落计算,得出初次垮落步距为28.4m,周期垮落步距为11.6m;并通过数 值模拟得出模型计算出顶板初次垮落步距为30m,周期垮落步距为15m。结果一 致性较好。 (2)根据相似模拟得出,裂隙发育分为顶板初次垮落之前、顶板周期垮落 期间、工作面附近三个阶段。覆岩下沉过程是非线性的;越是高位岩层下沉过程 越连续。覆岩层位越高越接近于原岩应力状态,垮落带岩层处于低应力状态。模 型的垮落带高度为 45m,导水裂隙带高度为 117m。 (3)根据数值模拟得出,特厚煤层综采一次才全高的垮采比和裂采比高于 厚煤层综采,且两种开采条件下的垮采比和裂采比的比值均高于采高的比值,可 以看出,煤层厚度对导水裂隙高度的影响大于对垮落带高度的影响;同时,特厚 煤层综采一次采全高受采动影响范围更大,达到稳定所需时间较长,但覆岩沉降 万方数据 摘 要 的传递过程不受采高的影响; 特厚煤层综采一次采全高与厚煤层总综采在覆岩应 力变化过程上基本没有明显差异, 但最大应力水平在煤层开采厚度增加一本的前 提下比厚煤层综采高出 11.6。 (4)采用钻孔冲洗液漏失量观测与彩色钻孔电视观测相结合的方法,测得 补连塔煤矿12511工作面的垮采比在4.615.12之间, 裂采比在13.9216.37之间; “两带”分布符合马鞍‖型的破坏形态;并通过数值拟合及对比分析,得出补连 塔 12511 工作面两带‖发育高度与神东矿区整体规律的差异性;从覆岩应力、沉 降及破坏范围的角度,对比分析相似模拟、数值模拟及现场实测结果,一致性较 好,验证研究结论的可信度。 关键关键词词特厚煤层;综采一次采全高;覆岩破坏;采动裂隙场;两带高度 万方数据 Abstract ABSTRACT The Shendong mining area is located in the core area of energy “golden Triangle“, where the coal resources are extremely rich.the favorable coal seam occurrence condition impels the Shendong mining area priority to realize the large-scale modernized mining of coal resources. Compared with traditional mining technology, modern mining technology has the characteristics of large area and fast speed of one mining face, coupled with the characteristics of the special overburden assemblage types in the Shendong mining area, which leads more violent impact on overburden failure by mining, brings serious harm to the safety production and ecological environment of the coal mines in Shendong mining area and brings many technical problems to pressing coal mining . Although most of the mines in Shendong mining area have broken through difficulties in mining tens of millions of tons of annual. But the Bulianta coal mine as the representative of tens of thousands of tons of mines realized large-scale and efficient mining, meanwhile faced the safety of mining, environment restoration of mining area and other problems. The severe damage caused by high strength mining is a serious threat to the safety of mine water prevention and surface constructions. The most representative 12551 working face of the Bulianta coal mine realized mining full-height of 8m extra thick seam in the fully mechanized mining , which leads the violent movement of the overlying strata on the working face, results in large deation of the surface, and s water guide channel with good connectedness, In addition to the perennial flow Wulan Mulun is located in the east of the well, which ing the good water filling conditions for the bringing great security risks for safety production of 12511 working face of Bulianta coal mine. Therefore, it is instructive to study the failure law of 12511 working overburden Rock in the coal mine. Based on the study of the 12511 working face of the connecting tower, this paper analyses the development, settlement change and stress change of the overlying strata by simulating experiments with similar materials and UDEC numerical simulation experiments. Secondly, the development height of “two belts“ in the working face is analyzed by using the leakage observation of drilling fluid and the color TV observation The main conclusions are as follows 万方数据 Abstract 1 The calculation ula of the initial and periodic caving distance of roof is deduced, it is used to calculate the roof caving in the 12511 working face of the connecting tower coal mine, the first caving step distance is 28.4m, the period caving step distance is 11.6m, and the model is calculated by numerical simulation to calculate the first roof caving step distance is 30m, The cycle caving step distance is 15m. The results are in good consistency. 2 According to similar simulation, fracture development is divided into open cut eye-roof initial pressure, roof first to pressure to cycle, face and cut near three stages. The subsidence process of overburden rock is non-linear; The higher the overlying strata is, the more closely the stress state of the original rock is, the lower the caving zone is. The height of the model is 45m, and the fracture zone is 117m. 3 The caving ratio and crack-mining ratio are higher than that of thick seam in fully mechanized mining of extra thick seam. The ratio of caving ratio and splitting ratio is higher than the ratio of mining height, and it can be concluded that the influence of seam thickness on the height of water conduction fissure is greater than that of caving zone. At the same time, the fully mechanized mining in extra thick coal seam has a greater influence on mining, and it takes longer to stabilize. But the transfer process of overburden subsidence is not affected by mining height. There is no obvious difference in the overburden stress change process between the fully mechanized mining in the extra thick coal seam and the thick coal seam, but the maximum stress level is 11.6 higher than the thick seam fully mechanized mining. 4 Using the of combining the leakage observation of the drilling fluid and the color borehole TV observation, the ratio of the 4.615.12 of the 12511 working face of the filling tower coal mine is measured between the 13.9216.37 and the split-mining ratio. The two bands “distributed in accordance with the“ saddle “type of overburden rock failure pattern. From the angle of overburden stress, subsidence and damage range, the similarity simulation, numerical simulation and field measured results are compared and analyzed, which proves the credibility of the research conclusion. The difference between the development height of the “two belts“ and the overall law of Shendong mining area is obtained by comparison and analysis. Key words extra thick coal seam; mining full-height in the fully mechanized mining; overburden rock failure; mining crack field; two-zones‖ heights 万方数据 目 录 I 目目 录录 第第1章章 绪论绪论 ................................................................................................................... 1 1.1 研究背景及意义 ............................................................................................. 1 1.2 研究现状 ......................................................................................................... 2 1.2.1 覆岩破坏机理研究 ............................................................................... 2 1.2.2 覆岩采动裂隙发育规律研究 ............................................................... 4 1.2.3 神东矿区覆岩破坏规律研究 ............................................................... 9 1.3 研究内容与方法 ........................................................................................... 10 1.3.1 研究内容 ............................................................................................. 10 1.3.2 研究方法 ............................................................................................. 11 1.3.3 技术路线 ............................................................................................. 11 1.4 本章小结 ....................................................................................................... 12 第第2章章 覆岩顶板破坏机理研究覆岩顶板破坏机理研究 ................................................................................. 13 2.1 上覆岩层破坏形式 ....................................................................................... 13 2.1.1 拉弯破坏 ............................................................................................. 13 2.1.2 切断破坏 ............................................................................................. 17 2.2 顶板垮落步距确定 ....................................................................................... 17 2.2.1 顶板初次垮落步距确定 ..................................................................... 17 2.2.2 顶板周期垮落步距确定 ..................................................................... 20 2.3 补连塔煤矿顶板垮落分析 ........................................................................... 21 2.3.1 顶板垮落过程力学分析 ..................................................................... 22 2.3.2 顶板垮落过程数值模拟 ..................................................................... 22 2.3.3 结果分析 ............................................................................................. 24 2.4 本章小结 ....................................................................................................... 25 第第3章章 特厚煤层综采一次采全高覆岩破坏特征相似模拟研究特厚煤层综采一次采全高覆岩破坏特征相似模拟研究 ............................. 27 3.1 引言 ............................................................................................................... 27 3.2 模型的建立 ................................................................................................... 27 万方数据 目 录 II 3.2.1 模拟工作面条件 ................................................................................. 27 3.2.2 相似条件及模型参数确定 ................................................................. 29 3.2.3 模型铺设方案 ..................................................................................... 29 3.2.4 模拟实验方案 ..................................................................................... 31 3.3 相似模拟结果分析 ....................................................................................... 32 3.3.1 采动裂隙场时空演化过程分析 ......................................................... 32 3.3.2 覆岩采动裂隙密度变化过程分析 ..................................................... 36 3.3.3 采场上覆岩层移动变形规律分析 ..................................................... 36 3.3.4 采场上覆岩层应力场分布规律分析 ................................................. 39 3.4 本章小结 ....................................................................................................... 40 第第4章章 特厚煤层综采一次采全高覆岩破坏特征数值模拟研究特厚煤层综采一次采全高覆岩破坏特征数值模拟研究 ............................. 41 4. 1 引言 .............................................................................................................. 41 4. 2 模型的建立 .................................................................................................. 42 4.2.1 模型的设计原则 ................................................................................. 42 4.2.2 本构模型及边界条件选取 ................................................................. 42 4.2.3 模型建立及参数选取 ......................................................................... 43 4.2.4 监测点布设及开挖方法 ..................................................................... 44 4. 3 数值模拟结果分析 ...................................................................................... 45 4.3.1 覆岩垮落及裂隙时空演化过程分析 ................................................. 45 4.3.2 覆岩位移场分布变化过程分析 ......................................................... 50 4.3.3 覆岩应力场变化过程分析 ................................................................. 53 4. 4 本章小结 ...................................................................................................... 56 第第5章章 特厚煤层综采一次采全高覆岩破坏高度研究特厚煤层综采一次采全高覆岩破坏高度研究 ............................................. 58 5.1 两带‖高度实测研究 ..................................................................................... 58 5.1.1 典型工作面条件 ................................................................................. 58 5.1.2 观测方案优化设计 ............................................................................. 58 5.1.3 覆岩破坏高度确定 ............................................................................. 62 5.2 两带‖高度特征性分析 ................................................................................. 69 5.2.1 神东矿区两带高度预计公式 ............................................................. 69 万方数据 目 录 III 5.2.2 两带‖高度实测结果分析 .................................................................. 71 5.3 研究结果对比分析 ....................................................................................... 72 5.3.1 两带‖高度对比分析 .......................................................................... 72 5.3.2 覆岩应力对比分析 ............................................................................. 72 5.3.3 覆岩沉降对比分析 ............................................................................. 74 5.4 本章小结 ....................................................................................................... 74 第第6章章 结论与展望结论与展望 ..................................................................................................... 76 6.1 结论 ............................................................................................................... 76 6.2 展望 ............................................................................................................... 77 参考文献参考文献 ..................................................................................................................... 78 致致 谢谢............................................................................................................................ 81 在读期间发表的学术论文与取得的其他研究成果在读期间发表的学术论文与取得的其他研究成果 ................................................. 82 万方数据 第1章 绪论 1 第第1章章 绪论绪论 1.1 研究背景及意义研究背景及意义 随着我国经济建设的发展,煤炭在国民经济发展中起到的作用也日益显著, 煤矿也逐渐在国民经济基础产业建设中占据重要的的战略地位。同时,作为我国 现如今最主要能源之一的煤炭,其储量和产量分别居世界第三位和第一位,矿产 品产量及消费水平位居世界前列。据全国煤炭资源储量统计显示,煤炭作为我国 第一能源,约占全国一次性能源消费的60以上,中国西部及北部地区煤炭储量 占全国煤炭资源总量的80左右。 丰富的煤炭资源储量促进了我国煤炭行业的持 续发展,其带来的社会效益不仅加速了我国经济建设的发展,推动了全面实现小 康社会的发展进程,更是为实现社会主义现代化建设做出了重要贡献。 随着近年来开采技术和装备水平的提升,各煤矿企业的建设规模也日益扩 大。从建国初期,我国保存相对较好的煤矿仅有300多座,发展到现如今,我国 已在神东、华亭、灵武、黄陵等矿区相继形成了多产业