寺家庄煤矿顶板高抽巷层位优化研究.pdf
工程硕士专业学位论文 寺家庄煤矿顶板高抽巷层位优化研究 Study on Optimizing Strata Level of High Drainage Roadway in Sijiazhuang Coal Mine 作者钱雷杰 导师胡国忠教授 中国矿业大学 二 0 二 0 年六月 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 保密的学位论文在解密后适用本授权书。 作者签名导师签名 年月日年月日 万方数据 中图分类号TD823学校代码10290 UDC622密级公开 中国矿业大学 工程硕士专业学位论文 寺家庄煤矿顶板高抽巷层位优化研究 Study on Optimizing Strata Level of High Drainage Roadway in Sijiazhuang Coal Mine 作者钱雷杰导师胡国忠 申请学位 工程硕士专业学位培养单位矿业工程学院 学科专业矿业工程研究方向绿色开采 答辩委员会主席柏建彪评 阅 人盲审 二 0 二 0 年六月 万方数据 致谢致谢 本论文是在导师胡国忠教授的悉心指导下完成。从论文的选题、写作以及最 终的修改、完成,导师给予了精心的指导和耐心的鼓励与支持,倾注了大量的心 血与汗水。 二年学期虽然短暂, 但胡国忠导师在学习和生活上给予了我莫大关心、 支持和帮助,同时其严谨的治学态度、平易近人的人格魅力等高尚品质无时无刻 不在感染我,使我在学习和实践等方面取得了长足的进步,也是传授给我弥足珍 贵的一笔财富,不断激励、引导我前进。在此,向胡国忠教授致以深深的敬意和 诚挚的感谢 感谢课题组许家林、秦伟、朱卫兵等老师在学习上给予的教诲和指导,感谢 研究生杨南、 侯浩然、 孙超和朱杰琦师兄在二年的学习生活中对我的支持与帮助。 感谢寺家庄煤矿的领导和工程技术人员在现场科研实践方面给予的支持和 帮助。 由于时间与作者水平的限制,文中难免有不足之处,敬请各位专家、老师批 评指正。 万方数据 I 摘摘要要 寺家庄煤矿采用了 U 型通风低位抽采巷高位抽采巷的治理模式,但在综 采工作面生产过程中,工作面上隅角和回风巷经常发生瓦斯超限。究其原因主要 是工作面走向高抽巷的布置参数依靠经验决定,没有科学的理论依据。因此,本 论文针对上述问题, 开展了寺家庄煤矿 15110 综采工作面走向高抽巷布置参数优 化研究。通过现场调研、理论计算、FLUENT 软件数值模拟以及工程应用等综合 手段,验证了工作面走向高抽巷能够明显降低上隅角、回风巷区域瓦斯浓度,并 确定了工作面走向高抽巷最佳的布置层位。经研究论证,高抽巷能够显著提高工 作面采煤安全系数,保证了综采工作面安全回采。通过对寺家庄煤矿 15110 综采 工作面走向高抽巷布置参数优化研究,得到的主要研究成果及结论如下 1 根据寺家庄煤矿现场地质条件和开采技术条件,研究寺家庄煤矿 15110 综采工作面采动上覆瓦斯卸压运移“三带”分布特征。经过分析计算得到相应的 上覆岩层瓦斯卸压运移“三带”范围不易解吸带区域位于埋深 227.62m 与 0m 之间, 卸压解吸带区域位于埋深 232.05m 与 247.96m 之间, 导气裂隙带区域位于 埋深 251.25m 与 327.06m 之间。 2 通过相关理论分析和公式推导,得到采空区空间渗透率分布函数。利用 相关经验公式确定 15110 综采工作面顶板走向高抽巷在空间层位大致范围, 即高 抽巷与回风巷水平距离为 48m、高抽巷与 15煤层顶板竖直距离为 53m。给出六 种不同的高抽巷在空间的层位布置方案,利用 FLUENT 数值模拟软件对高抽巷 布置方案进行瓦斯抽采模拟。通过对相关瓦斯参数数据进行瓦斯效果分析,得到 了高抽巷最佳层位布置参数, 即 15110 综采工作面顶板走向高抽巷与回风巷水平 距离为 48m、与 15煤层顶板竖直距离为 53m。 3 根据矿井实际工程地质条件,结合高抽巷空间层位最佳布置参数,制定 了 15110 综采工作面走向高抽巷空间层位施工方案。 通过对高抽巷抽采瓦斯效果 分析,上隅角和回风巷区域内未发生瓦斯超限现象;高抽巷抽采平均瓦斯浓度始 终在 30上下浮动; 随着综采工作面不断向前推进, 走向高抽巷瓦斯抽采量呈现 不断增加的趋势。 该论文有图 25 幅,表 7 个,参考文献 81 篇。 关键词关键词关键层;高抽巷;瓦斯卸压运移“三带”;瓦斯抽采效果 万方数据 II Abstract Sijiazhuang Coal Mine adopts U-shaped ventilation low-level extraction lane high-level extraction lane. However, in the production process of fully mechanized mining face, gas overruns often occur in the corners and return air lanes of the face. The main reason is that the layout of the working face towards the high-drawing lanes is determined by experience, and there is no scientific theoretical basis. Therefore, in view of the above-mentioned problems, this thesis carried out the optimization research on the high-draw layout of the strike direction of the roof of 15110 fully mechanized coal mining face in Sijiazhuang Coal Mine. Through on-site investigation, theoretical calculation, numerical simulation of FLUENT software and engineering application, it was verified whether the face moving towards the high pumping lane can significantly reduce the gas concentration in the upper corner and return air lane area, and determine the working face moving towards the high pumping lane layout layer Whether the bit is reasonable. After research and demonstration, moving towards high pumping lanes can significantly improve the safety factor of coal mining at the face and ensure the safe recovery of fully mechanized face. The main research results and conclusions obtained by optimizing the layout of high-draw roadways in roof striking of 15110 fully mechanized coal mining face in Sijiazhuang Coal Mine are as follows 1 According to the on-site geological conditions and mining technical conditions of the Sijiazhuang Coal Mine, study the distribution characteristics of the “three belts”of gas relief and pressure migration in the 15110 comprehensive mining face of the Sijiazhuang Coal Mine. After analysis and calculation, the corresponding “three belts” of gas pressure relief and migration in the overlying rock layer are obtained the area ofthe uneasy desorption zone is located between 227.62m and 0m, and the area ofthe pressure desorption zone is located between 232.05m and 247.96m. The area ofthe gas conduction fracture zone is between 251.25m and 247.96m. 2 Through relevant theoretical analysis and ula derivation, the spatial permeability distribution function of the goaf is obtained. Using the relevant relevant empirical ulas to determine the approximate range of 15110 fully mechanized coal mining face roof strata high pumping roadway, that is, the horizontal distance of 15110 fully mechanized coal mining face roof stroking high pumping roadway and return air roadway is about 48m, high pumping roadway and 15 the vertical distance 万方数据 III of coal seam roof is about 53m. Six different layout plans for high-drainage roadways in space are given, and gas drainage simulation is carried out on the layout plans of high-drainage roadways using FLUENT numerical simulation software. Through the analysis of the gas effect on the relevant gas parameter data, the optimal layer layout parameters of the high-drainage roadway are obtained, that is, the horizontal distance between the high-drainage roadway and the return air roadway in the 15110 fully mechanized coal mining face is 48m, which is vertical to the 15 coal seam roof The distance is 53m. 3 According to the actual engineering geological conditions of the mine, combined with the optimal layout parameters of the high-drilling road space, the construction plan of the 15110 fully mechanized coal mining face roof strata high-drain road space is developed. Through the analysis of the gas extraction effect in the high-drainage roadway, no gas overrun occurred in the corners and return air lanes of the 15110 fully mechanized coal mining face; the average gas concentration in the high-drainage roadway in the roof movement always fluctuated around 30; With the 15110 fully mechanized coal mining face continuously advancing, the gas drainage volume towards the high-drainage roadway is showing an increasing trend. There are 25 pictures, 7 tables and 81 references in this paper. Keywords Key layer ; High drainage way ; “Three zones“ of gas pressure relief and migration ; Gas extraction effect 万方数据 IV 目目录录 摘摘要要............................................................................................................................I I 目目录录..........................................................................................................................IVIV 图清单图清单......................................................................................................................VIIIVIII 表清单表清单............................................................................................................................X X 变量注释表变量注释表..................................................................................................................X XI I 1 1 绪论绪论............................................................................................................................1 1 1.1 研究背景及意义................................................................................................1 1.2 国内外研究现状................................................................................................1 1.3 研究内容及技术路线........................................................................................5 2 2 采动上覆瓦斯卸压运移采动上覆瓦斯卸压运移““三带三带””分布特征分布特征........................................................... 7 7 2.1 矿区地质概况....................................................................................................7 2.2 矿井瓦斯赋存特征............................................................................................8 2.3 工作面概况........................................................................................................9 2.4 采空区顶板卸压覆岩岩层移动规律..............................................................10 2.5 采动上覆瓦斯卸压运移“三带”高度理论计算...........................................11 2.6 本章小结..........................................................................................................16 3 3 高抽巷合理空间层位布置高抽巷合理空间层位布置......................................................................................1717 3.1 FLUENT 模拟软件简介.....................................................................................17 3.2 数值模型建立..................................................................................................18 3.3 高抽巷模拟方案的确定..................................................................................25 3.4 高抽巷抽放瓦斯数值模拟效果分析..............................................................28 3.5 本章小结..........................................................................................................35 4 4 工程验证工程验证..................................................................................................................3636 4.1 高抽巷层位布置...............................................................................................36 4.2 15110 综采工作面矿压规律...........................................................................38 4.3 高抽巷抽放瓦斯效果分析..............................................................................39 4.4 本章小结..........................................................................................................43 5 5 主要结论与前景展望主要结论与前景展望..............................................................................................4 45 5 5.1 主要结论..........................................................................................................45 5.2 前景展望..........................................................................................................46 万方数据 V 参考文献参考文献......................................................................................................................4 47 7 作者简历作者简历......................................................................................................................5 52 2 学位论文原创性声学位论文原创性声明明..................................................................................................5353 学位论文数据集学位论文数据集..........................................................................................................5454 万方数据 VI Contents Abstract........................................................................................................................II Contents......................................................................................................................VI List of Figure...........................................................................................................VIII List of Table.................................................................................................................X List of Variables......................................................................................................... XI 1 Introduction...............................................................................................................1 1.1 Research Background and Significance...................................................................1 1.2 The Research State at Home and Abroad................................................................ 1 1.3 Research Contents and Technical Route..................................................................5 2 “Three Zones“ Distribution Characteristics of Overlying Relieved Gas Delivery.........................................................................................................................7 2.1 Geological Profile of the Mining Area.....................................................................7 2.2 Characteristics of Mine Gas Occurrence..................................................................8 2.3 Working Face Overview..........................................................................................9 2.4 Movement Law of Overburden Rock Strata in Roof Goaf....................................10 2.5Theoretical Calculation of Overlying Relieved Gas Delivery “Three Zones“........11 2.6 Chapter Conclusion................................................................................................16 3 Reasonable Space Layout of High-drainage and Support Design......................17 3.1 Introduction of FLUENT Simulation Software.....................................................17 3.2 Building of the Numerical Model..........................................................................18 3.3 Simulation Scheme Determination of High-drainage............................................25 3.4 Numerical Simulation Drainage Effect Analysis of High-drainage...................... 28 3.5 Chapter Conclusion................................................................................................35 4 Engineering Verification........................................................................................ 36 4.1 Layering Arrangement of High Suction Roadway.................................................36 4.2 The Law of Underground Pressure in 15110 Fully Mechanized Mining Face......38 4.3 Drainage Effect Analysis of High-drainage...........................................................39 4.4 Chapter Conclusion................................................................................................43 5 Main Conclusion and Prospect..............................................................................45 5.1 Main Conclusion....................................................................................................45 5.2 Prospect..................................................................................................................46 万方数据 VII References...................................................................................................................47 Author’s Resume........................................................................................................52 Declaration of Thesis Originality..............................................................................53 Thesis Data Collection...............................................................................................54 万方数据 VIII 图清单图清单 图序号图名称页码 图 1-1技术路线图6 Figure 1-1Figure 1-1 Technology roadmap6 图 2-1矿井及周边地理位置7 Figure 2-1Mine and surrounding geographical location7 图 2-215110 综采工作面布置平面图9 Figure 2-2 Plan layout of high drainage roadway of 15110 fully mechanized mining face 9 图 2-315110 综采工作面高抽巷布置剖面图9 Figure 2-3 Section layout of high drainage roadway15110 fully mechanized mining face 9 图 2-4“三带”示意图11 Figure 2-4The illustration of three zone11 图 2-5上覆岩层瓦斯卸压运移“三带”划分11 Figure 2-5 Gas pressure relief and migration in overlying rock are divided into “three zones“ 11 图 2-6基于关键层位置的导水裂隙带高度预计方法流程[82]12 Figure 2-6 Flow chart of the prediction for the height of fractured water-conducting zone by key strata location 12 图 2-7寺家庄煤矿 15110 综采工作面钻孔柱状图14 Figure 2-7 Histogram of drilling holes in 15110 comprehensive mining face in Sijiazhuang Coal Mine 14 图 2-8寺家庄煤矿 15110 综采工作面关键层判别结果15 Figure 2-8 Discriminant re