基于“连续梁”模型的巷道顶板支护优化.pdf
硕士学位论文 基于“连续梁”模型的巷道顶板支护优化 Optimization of Roadway Roof Support Based on “Continuous Beam”Model 作 者李 井 导 师张 农 教授 中国矿业大学 二〇一七年五月 教育部科技项目113030A 国家自然科学基金面上项目51574226 江苏省高校优势学科建设工程资助项目PAPD 万方数据 中图分类号 TD353 学校代码 10290 UDC 622 密 级 公开 中国矿业大学 硕士学位论文 基于“连续梁”模型的巷道顶板支护优化 Optimization of Roadway Roof Support Based on “Continuous Beam”Model 作 者 李 井 导 师 张 农 教 授 申请学位 工学硕士 培养单位 矿业工程学院 学科专业 采矿工程 研究方向 岩体力学与岩层控制 答辩委员会主席 柏建彪 评 阅 人 丁允杰 李桂臣 二〇一七年五月 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 2017 年 月 日 2017 年 月 日 万方数据 致致 谢谢 在此真诚感谢导师张农教授近三年来给予我在学习、工作、生活中的指导和 关心。希望他能在百忙之中抽点时间锻炼身体,祝愿他身体健康、生活幸福、工 作顺利。再次送上我美好的祝福和诚挚的谢意 本文是在导师张农教授的悉心指导下完成的,在论文选题、路线设计、框架 构建乃至最后的文理疏通、 审阅定稿等每一步工作中, 导师都倾注了大量的心血。 导师提供了现场实践的平台。此外,在我工作方向定位以及找工作过程中,导师 也给予了极大的鼓励和帮助。导师对学生认真负责的态度, 严谨求实的治学精神 以及勤勉的工作作风是我今后学习和工作的榜样,师从三载,受益终身。在此, 谨向导师致以深深的敬意和由衷的感谢。 在论文开题和撰写过程中,李桂臣教授、郑西贵教授、许兴亮副教授、赵一 鸣老师、韩昌良老师给予了极大的帮助,在此一并感谢。 感谢课题组冯晓巍、李宝玉、郭玉、潘东江、王洋等师兄在论文工作中给予 的指导和帮助,感谢张天池在 flac 软件使用过程中提供的帮助和建议,感谢吴鹏 起、高凯、岳炜、王龙辉、徐骁勇等同学在生活和工作中给予的帮助和支持,感 谢谢正正、马鹏、杨可等师弟在现场工作中给予的大力支持,在此向其他给予我 关心和帮助的师兄、同学、师弟们表示衷心的感谢。 感谢父母对我多年来的照顾、生活中的支持、学习上的鼓励、犯错时的谅解 和无限的关爱。此外,感谢姐姐、姐夫、妹妹、妹夫在我读书期间对于家庭的关 心和照顾。衷心祝他们身体健康,生活幸福 最后感谢在百忙之中评审论文并提出宝贵意见的各位专家, 感谢论文所有引 用文献作者们的辛勤工作,感谢所有帮助和关心过我的人 李井 2017 年 5 月于徐州 万方数据 I 摘摘 要要 葫芦素矿随着开采的推进遇到了采掘接替紧张问题, 巷道的掘进速度满足不 了煤体的回采速度,原因在于顶板锚杆支护密度较大、时间较长。针对葫芦素矿 采掘失调问题提出了支护优化方案。本文建立的“连续梁”模型是一个适用于求 解中等稳定及以上巷道顶板条件下顶板位移模型,通过“连续梁”模型的建立, 希望为巷道顶板变形提供了一个量化的计算方法, 同时给出了顶板破坏位移判据。 通过“连续梁”模型的构建,数值模拟及工业性实验得出优化方案的可行性,在 研究过程中得到的结论如下 (1)矩形巷道围岩应力分布表达式。通过使用复变函数将矩形巷道转化为 圆形巷道进行分析,通过圆形巷道围岩结论反推矩形巷道围岩应力分布。塑性区 宽度确定。 通过对巷道开挖后围岩分布与原有围岩分布进行分析, 使用积分方法, 带入具体的巷道实测数据并通过坐标转化得出塑性区宽度的表达式。 (2) “连续梁”模型的建立、分析、求解及稳定性判断。通过将巷道顶板巷 道简化,提炼出顶板梁模型,通过对两端固支梁的分析利用积分法得出模型挠度 求解表达式,并提出梁的破坏形式主要来源于大挠度位置的拉破坏,在此基础上 建立挠度破坏准则。针对葫芦素矿的具体地质条件建立相应的连续梁进行求解, 并分析不同支护形式下梁的挠度差异及不同梁厚度情况下梁挠度关系。 得出优化 方案在位移上优于原有支护方案。 针对巷道顶板应力分布及塑性区范围的求解提 供两种思路,第一种理论推导法采用复变函数的方法。第二种数值模拟方法,建 立相应矿山的数值模拟采用弹性求解方法模拟出距顶板不同位置的围岩应力表 达式,同时得出塑性区方法,此方法不仅简化了计算,同时还提高了正确率。 (3)采用数值模拟建立葫芦素矿两种支护方式的位移、应力和塑性区的对 比。在巷道顶板不同位置布置相应的监测点进行监测,通过云图和监测数据对比 分析巷道沉降在不同高度随巷道尺寸的一般规律, 巷道沉降沿顶板方向的变化关 系, 围岩应力改变的相应规律。通过优化方案与原有支护方案的相应位置对比发 现优化方案在位移、应力和塑性区上都要优于原有支护方案,从而证明了优化方 案的可行性。 (4)通过对葫芦素矿实验巷道在表面位移监测、压力监测和顶板离层窥视 方面进行工业性试验,相比于原有支护方案优化方案效果更加显著,巷道整体维 护情况良好。 特别是优化方案的实施对离层进行了有效控制, 得出大间排距方案 是可行的。 论文共有图 34 幅,表 8 个,参考文献 96 篇。 关键词关键词连续梁;矩形巷道;应力求解;挠度表示;挠度判据 万方数据 III Abstract With the development of coal mining, Hu Lu Su mine has confronted with the problem of the tension in mining replacing, and the trouble that the drivage speed of roadway cannot match the speed of coal mining, for the big supporting density of roof bolt and long time. In view of the problem of mining offset in Hulusu mine, the optimization scheme of support is put forward. The continuous beam model established in this paper is suitable for solving a stable medium and above the roadway roof under roof displacement model, through the establishment of “continuous beam” model to provide a quantitative and give the displacement criterion for the damage of roof roadway roof deation. Through the construction of the continuous beam model, numerical simulation and industrial experiments, the feasibility of the optimization scheme is obtained, and the conclusions obtained in the study are as follows 1 Stress distribution law of surrounding rock of rectangular tunnel. Through the use of complex functions, the rectangular tunnel is transed into a circular tunnel, and then the stress distribution of surrounding rock of the rectangular tunnel is deduced in the same way. Determination of width of plastic zone. Through the analysis of the distribution of surrounding rock and the distribution of the original surrounding rock after excavation, the integral is used to carry out the measured data of the tunnel and the expression of the width of the plastic zone is obtained by coordinate transation. 2 The establishment, analysis, solution and stability judgment of the continuous beam model. The roadway roof is simplified to refine roof beam model. Based on the fixed beam analysis using integral model, we can get the deflection expressions, and put forward the idea that the failure of beam mainly originates from the large deflection position to make deflection failure criterion. According to the specific geological conditions of Hulusu mine, the corresponding continuous beam is established and the deflection difference of beam under different support s and the deflection relation of beam under different beam thickness are analyzed. It is concluded that the optimization scheme is superior to the original supporting scheme in displacement.There are two ways to solve the stress distribution of the roof and the range of the plastic zone. The first theoretical deduction adopts the of complex variable. The second one is numerical simulation which adopts elastic mine by establishing the simulation of stress expressions from the roof in 万方数据 IV different positions. At the same time, the plastic zone is obtained, which not only simplifies the calculation, but also improves the rate of correct. 3 Numerical simulation is used to establish the displacement, stress and comparison of plastic areas of two kinds of support s for Hu Lu mine. Monitoring points of roadway roof are supposed to be arranged in the different positions. By comparing the images and analyzing monitoring data of tunnel settlement at different height with the general rules of size variation along the roadway, the roof roadway settlement, the corresponding laws of surrounding rock stress change could get obtained. Through the comparison between the optimization scheme and the corresponding location of the original support scheme, it is found that the optimization scheme is superior to the original support scheme in displacement, stress and plastic areas, thus proving the feasibility of the optimization scheme. 4 The industrial test in surface displacement monitoring, pressure monitoring and roof separation is better than the original one. The whole roadway maintains in good condition. Especially the implementation of the optimization scheme has effectively controlled the separation layer, and it has been proved that the large spacing scheme is feasible. There are 34 pictures, 8 tables and 96 references in this paper. Keywords continuous beam; rectangular tunnel; stress solution; deflection expression; deflection criterion 万方数据 V 目目 录录 摘摘 要要 ........................................................................................................................... I 目目 录录 .......................................................................................................................... V 图清单图清单 ........................................................................................................................ IX 表清单表清单 ........................................................................................................................ XI 变量注释表变量注释表 ............................................................................................................. XIII 1 绪论绪论 ........................................................................................................................... 1 1.1 选题的背景及意义................................................................................................. 1 1.2 国内外研究现状..................................................................................................... 2 1.3 研究内容及技术路线............................................................................................. 9 2 2 矩形巷道围岩应力分布与塑性区宽度矩形巷道围岩应力分布与塑性区宽度分析分析 ......................................................... 10 2.1 矩形巷道围岩应力表达式弹性理论求解........................................................... 10 2.2 矩形巷道围岩应力分布规律............................................................................... 13 2.3 矩形巷道塑性区宽度表达式弹性理论求解....................................................... 14 2.4 本章小结............................................................................................................... 14 3 3 顶板顶板““连续梁连续梁””模型的建立及应用模型的建立及应用 ..................................................................... 16 3.1 “连续梁”模型 ........................................................................................................ 16 3.2 巷道顶板“连续梁”稳定模型的建立 ................................................................... 17 3.3 顶板“连续梁”模型的应用 ................................................................................... 22 3.4 本章小结............................................................................................................... 31 4 “连续梁连续梁”模型顶板应力数值分析对比模型顶板应力数值分析对比 .................................................................. 32 4.1 葫芦素矿不同支护方案对比............................................................................... 32 4.2 “连续梁”条件下锚杆支护应力对比 .................................................................... 36 4.3 本章小结............................................................................................................... 45 5 5 工业性试验工业性试验 ............................................................................................................. 47 5.1 巷道基本情况....................................................................................................... 47 5.2 巷道顶板沉降量................................................................................................... 47 5.3 巷道压力监测....................................................................................................... 49 5.4 巷道顶板离层窥视............................................................................................... 51 5.5 本章小结............................................................................................................... 52 6 6 主要结论主要结论 ................................................................................................................. 54 参考文献参考文献 ..................................................................................................................... 57 万方数据 VI 作者简历作者简历 ..................................................................................................................... 63 学位论文原创性声明学位论文原创性声明 ................................................................................................. 64 学位论文数据集学位论文数据集 ......................................................................................................... 65 万方数据 VII Contents Abstract ...................................................................................................................... III Contents .................................................................................................................... VII List of Figures ............................................................................................................ IX List of Tables .............................................................................................................. XI List of Variables...................................................................................................... XIII 1 Introduction ............................................................................................................... 1 1.1 The Raise of Problem and the Meaning of Research ............................................... 1 1.2 Research Status at home and abroad ........................................................................ 2 1.3 Research Contents and Technology Roadmap ......................................................... 9 2 Solution of stress distribution and plastic zone width of rectangular tunnel .... 10 2.1 Elastic theory solution of stress expression of surrounding rock in rectangular tunnel............................................................................................................................ 10 2.2 Stress distribution law of surrounding rock in rectangular tunnel ......................... 13 2.3 Elastic theory solution of width of plastic zone width of rectangular tunnel ........ 14 2.4 Brief Summary ....................................................................................................... 14 3 Establishment and application of “continuous beam“ model of roof ................ 16 3.1 Continuous beam model ........................................................................................ 16 3.2 Establishment of stable model of continuous beam in roadway roof .................... 17 3.3 Application of roof “continuous beam“ model ...................................................... 22 3.4 Brief Summary ....................................................................................................... 31 4 Numerical analysis of the stress of the continuous beam model ......................... 32 4.1 Comparison of different support schemes in Hulusu mine .................................... 32 4.2 Stress comparison of bolt support under the condition of continuous beam ......... 36 4.3 Brief Summary ....................................................................................................... 45 5 Engineering Practice ............................................................................................... 47 5.1 Background of Roadway........................................................................................ 47 5.2 Roof settlement of Roadway .................................................................................. 47 5.3 Pressure Monitoring of Roadway .......................................................................... 49 5.4 Roof separation of Roadway .................................................................................. 51 5.5 Brief Summary ....................................................................................................... 52 6 Main Conclusions .................................................................................................... 54 References ................................................................................................................... 57 万方数据 VIII Author’s Resume ........................................................................................................ 63 Declaration of Thesis ................................................................................................. 64 Thesis Data Collection ............................................................................................... 65