生态脆弱矿区土层中导水裂缝带发育高度研究_冯洁.pdf
第 46 卷 第 1 期 煤田地质与勘探 Vol. 46 No.1 2018 年 2 月 COAL GEOLOGY 2. Shaanxi Coal and Chemical Technology Institute Co., Ltd., Xi’an 710065, China Abstract In order to guide the coal mining under water-bering ecologically fragile mining area, the mi- cro-resistivity scanning imaging technique, physical simulation, numerical simulation and the drilling fluid con- sumption have been applied to show the development law of the water flowing fractured soil layer. The results show that the ratio of the height of the fractured zone to the mining height is 28.129.1 by the physical simulation and numerical simulation, and the ratio of the height of the fractured zone to the mining height is 28.328.5 by the micro-resistivity scanning imaging technique. The field measurement results are identical with the other s. Micro-resistivity scanning imaging technique can be applied to detect the development of the height of water flowing fractured zone in the soil layer for other mining areas. Keywords micro-resistivity scanning imaging; soil layer; water flowing fractured zone; the ecologically fragile mining area 我国陕北地区煤炭资源丰富, 但生态环境脆弱, 王双明等[1]研究表明该矿区合理生态地下水位埋深 为 1.55.0 m,煤层开采的导水裂隙导致地下水位下 降,表生生态退化,且煤层上覆重要含水层萨 拉乌苏组含水层,不仅是本地区的供水水源,也是 维系沙漠地区脆弱生态环境的主要水源[2],煤层开 采的导水裂缝极易沟通这一含水层,造成矿井水害 事故。 如何协调煤炭资源开采、水资源保护、矿井安 全这三者之间的平衡, 确定导水裂缝高度至关重要。 煤炭科技工作者已采用理论分析、经验公式、物理 模拟、数值模拟、现场实测等方法开展了大量煤炭 开采的导水裂缝带高度发育规律的研究工作[3-15], 但由于陕北生态脆弱区存在厚黄土层,给导水裂缝 带发育高度研究带来了如下困难①理论分析、经 验公式、物理模拟、数值模拟等方法均为间接获得 导水裂缝带高度,误差较大;②现场实测中的钻孔 冲洗液消耗量探测法应用较广,但由于冲洗液与黄 土混合后具有隔水效果, 冲洗液漏失量变化不显著, 无法准确判定导水裂缝带高度;③现场实测中的钻 ChaoXing 第 46 卷 第 1 期 煤田地质与勘探 Vol. 46 No.1 2018 年 2 月 COAL GEOLOGY 2. Shaanxi Key Laboratory of Prevention and Control Technology for Coal Mine Water Hazard, Xi’an 710077, China Abstract Aiming at the problem of hydrogeochemical anomalies existing in hydrogeological exploration in coal mines, Jurassic aquifer in Inner Mongalia-Shaanxi mining area was taken as research objective, analysis and con- struction of criteria of causes of hydrochemical anomalies were carried out. The results showedit was insufficient that during exploration “clean water and sand ” was taken as the basis for discriminating completion of well wash- ing, the residue of cement slurry was the major factor for hydrochemical anomalies such as increase of pH and de- crease of mineralization. Therefore, the results of complementary hydrological exploration and water detection and drainage in working faces in deeply buried coalfield in Inner Mongolia-Shaanxi mining area were combined, the criteria of “five factors” constituted of pH, mineralization TDS, HCO3-, SO42- were set up, 36 sets of water sam- ples collected during hydrological exploration in Balasu Mine were discriminated, 8 sets of hydrochemically ab- normal water samples were rapidly judged out. After rejection of hydrochemically abnormal water sample points, the hydrochemical characteristics of different aquifers in Balasu Mine might be set up clearly. Quaternary hydro- chemical characteristics were close to surface water, presented as water type of low mineralization, weak alkaline and heavy calcium carbonate. The aquifer of Jurassic Luohe ation was closely connected hydraulically with ChaoXing 98 煤田地质与勘探 第 46 卷 孔电视法在基岩中应用效果较好,在黄土中,由于 钻进过程中导水裂缝被黄土本身充填,难以直接、 清晰观测到裂缝,无法判定导水裂缝带高度。因此, 本文采用微电阻率扫描成像技术重点对该区黄土层 中的导水裂缝发育规律进行研究,辅以物理模拟、 数值模拟等手段,填补空白,进一步完善该区导水 裂缝带发育规律的研究成果。 1 研究区概况 陕北生态脆弱区地处毛乌素沙漠与黄土高原接 壤地带,年降水量约 400 mm,蒸发量约 2 000 mm, 属半干旱地区。 本次主要选取该区张家峁煤矿为研究对象。张 家峁煤矿以第四系中更新统离石组Q2l黄土为主, 全区分布,一般厚度 2030 m,最厚为 90.5 m。区 内黄土岩性为粉质黏土,孔隙度大,结构疏松,夹 有少量亚沙土。发育垂直节理,易被地表水流冲蚀, 浸水易失稳。受水流侵蚀作用影响,黄土区冲沟发 育,沟帮多形成陡坡,常有坍塌发生,沟头可见潜 蚀现象。 根据土工试验资料,区内黄土孔隙比 0.818,塑 限 17.7,液限 29.0,天然含水量 5.3,液性指数 0, 土体处于坚硬或硬塑状态。 压缩系数 0.041 MPa-1, 压缩模量 45.4 MPa。湿陷系数 0.010,不具湿陷性。 2 物理模拟与数值模拟预计导水裂缝带高度 2.1 物理模拟 以张家峁煤矿 5-2煤层开采为例, 选取孔 9 所在 区域钻孔柱状为实验原型,采用平面模型架,模型 架长 3.0 m,宽 0.2 m;几何相似比 1120。5-2煤层 采高 4.88 m,上覆基岩厚 96.12 m。 模拟试验表明工作面共推进 240 m,初次来 压步距 36 m,工作面回采结束,导水裂缝带高度发 育至土层中部, 高度约 137 m, 裂采比约 28.1图 1。 图 1 工作面回采结束覆岩破坏特征 Fig.1 Characteristics of overburden failure after the extrac- tion by physical simulation 2.2 数值模拟 根据张家峁煤矿 N15203 工作面孔 9 所在区域 钻孔柱状图建立长 500 m,高 191 m 的走向模型, 模型左右两侧设置 100 m 的边界煤柱。5-2煤层采高 为 5.5 m,上覆基岩厚度为 105 m。 模拟结果显示随着工作面推进,开采空间两 侧的裂隙发育高度不断增大,初次来压步距 55 m, 5-2煤层开采覆岩稳定后,高度约为 160 m,裂采比 29.1图 2。 图 2 工作面回采结束覆岩破坏特征单位m Fig.2 Characteristics of overburden failure after the extrac- tion by numerical simulationunitm 3 微电阻率扫描探测土层中导水裂缝带高度 3.1 微电阻率扫描成像技术测量原理 微电阻率扫描成像是一种重要的井壁成像方 法,它利用多极板上的多排纽扣状的小电极向井壁 地层发射电流,由于电极接触的岩石成分、结构及 所含流体的不同,由此引起电流的变化,电流的变 化反映井壁各处的岩石电阻率的变化,据此可显示 电阻率的井壁成像。 本次采用井壁微电阻率扫描成像测井仪MCI进 行探测[16-17],由推靠器极板体发射一交变电流,使电 流通过井内泥浆柱和地层构成的回路而回到仪器上部 的回路电极。推靠器、极板体金属连接等电位起到使 处于极板中部的阵列电扣流出的电流能垂直于极板外 表进入地层的聚焦作用。测量的阵列电扣电流强度反 映出电扣正对着的地层领域由于岩石结构或电化学上 的非均质性引起的微电阻率的变化图 3。 图 3 微电阻率扫描成像 Fig.3 Micro-resistivity scanning imaging 3.2 微电阻率扫描成像测量 在张家峁煤矿施工探测孔 2 个,分别为孔 8、 ChaoXing 第 1 期 冯洁等 生态脆弱矿区土层中导水裂缝带发育高度研究 99 孔 9, 位于张家峁煤矿北翼盘区 N15203 工作面采空 区图 4,主要开采 5-2煤层,采厚为 4.5 m,埋深 149 m,土层厚度为 21.92 m孔 8,58.89 m孔 9, 该工作面现已回采结束。煤层充分采动后对煤层上 覆 100 m 左右土层的导水裂缝进行了探测。 孔 8 测量孔段为 7.533.0 m,探测出 2 条导水 裂缝, 其中 21.829.9 m 范围内发育 2 条完整的高角 度裂缝图 5, 钻孔简易水文观测结果显示无水位全 泵量漏失,可知进入导水裂缝带区域,据此计算裂 采比为 28.5,其主要特征见表 1。 孔 9 测量孔段为 746 m,探测出 4 条导水裂 缝,其中 7.818.4 m 发育 3 条完成的高角度裂缝 图 6, 对比简易水文观测表 2可知, 从深度 18.4 m 开始水位下降迅速,逐渐全泵量漏失,22.4 m 深 度进入导水裂缝带,裂采比为 28.3,其主要特征 见表 3。 图 4 微电阻率扫描成像探测孔布置 Fig.4 Layout of exploration hole with micro-resistivity scan- ning imaging 表 1 孔 8 主要裂缝类型、特征及深度范围 Table 1 Types, characteristics and depth range of main fracture of borehole No.8 地质分层深度/m倾角/ 走向/ 范围/m 土层 21.8 85.8 143323 20.723.8 基岩 29.9 57.3 68.6249 28.730.2 表 2 微电阻率扫描成像与简易水文观测结果对比土层 Table 2 Results comparison between micro-resistivity scanning imaging and simple hydrology observation of soil layer 微电阻率扫描成像解释裂缝简易水文观测点裂缝 孔号 裂缝深 度/m 裂缝条 数/条 裂缝深 度/m 水位是否 存在 水位下降速 度/mmin-1 单位时间钻孔冲 洗液消耗量/Ls-1 对比结果 裂采比 21.8 21.92 无 1.3 孔8 29.9 2 29.12 无 1.3 无水位全泵量漏失,但岩体 较破碎,二者相互印证较好 28.5 7.87.9 7.79 有 0.026 0.693 3 18.4 16.67 有 0.380 0.791 7 孔9 22.4 4 22.97 无 2.074 2 水位从有到无,下降速度骤 变,无水位时全泵量漏失, 二者相互印证较好 28.3 图 5 孔 8 微电阻率扫描成像特征 Fig.5 Micro-resistivity scanning imaging characteristic of borehole No.8 表 3 孔 9 主要裂缝类型及特征和深度范围 Table 3 Types, characteristics and depth range of main fractures of borehole No.9 地质分层深度/m倾角/ 走向/ 范围/m 7.8 84.4 155335 7.59.0 7.9 84.4 155335 7.59.0 18.4 83.7 9.1189.1 17.519.2 土层 22.4 80.8 126.1306.1 21.823.2 3.3 微电阻率扫描成像与其他手段对比分析 微电阻率扫描成像技术探测出土层中的导水裂 缝在 7.821.8 m 深度处,综合钻孔冲洗液消耗可得 出煤层开采裂采比为 28.328.5,物理模拟与数值模 拟手段所得导水裂缝均发育至土层,裂采比为 28.129.1, 依据裂采比计算出物理模拟地表裂隙发育 深度为7.28 m, 与微电阻率扫描成像技术所获结果一致。 4 结 论 a. 陕北生态脆弱矿区土层中导水裂缝带发育 高度研究对该区“保水采煤”具有实际意义。 ChaoXing 100 煤田地质与勘探 第 46 卷 图 6 孔 9 微电阻率扫描成像特征 Fig.6 Micro-resistivity scanning imaging characteristic of No.9 drilling b. 首次将微电阻率扫描成像技术应用于张家 峁煤矿采动条件下土层中导水裂缝发育规律研究, 其探测结果与物理模拟、数值模拟等手段对比,准 确性高,可进一步扩大探测区范围,充分验证探测 结果可靠性后推广应用。 c. 本次在黄土层中发现了煤层开采的导水裂 缝,为后续土层中导水裂缝发育规律的研究奠定了 基础。 参考文献 [1] 王双明,黄庆享,范立民,等. 生态脆弱矿区含隔水层 特征及保水开采分区研究[J]. 煤炭学报,2010,351 7–14. WANG Shuangming,HUANG Qingxiang,FAN Limin,et al. Study on overburden aquclude and water protection mining re- gionazation in the ecological fragilem ining area[J]. Journal of China Coal Society,2010,3517–14. [2] 范立民, 王国柱. 萨拉乌苏组地下水及采煤影响与保护[J]. 采 矿技术,2006,63422–428. FAN Limin,WANG Guozhu. The influence and protection of coal mining for Salawusu groundwater[J]. Mining Technology, 2006,63422–428. [3] 钱鸣高,缪协兴,许家林,等. 岩层控制的关键层理论[M]. 徐州中国矿业大学出版社,2003. [4] 国家煤炭工业局. 建筑物、 水体、 铁路及主要井巷煤柱留设与 压煤开采规程[M]. 北京煤炭工业出版社,2000. [5] 白利民, 尹尚先, 李文. 综采一次采全高顶板导水裂缝带发育 高度的计算公式及适用性分析[J]. 煤田地质与勘探,2013, 41536–39. BAI Limin,YIN Shangxian,LI Wen. Calculation ula of water conducting zone height in roof for fully mechanized min- ing and its adaptability analysis[J]. Coal Geology Exploration, 2013,41536–39. [6] 尹尚先,徐斌,徐慧,等. 综采条件下煤层顶板导水裂缝带高 度计算研究[J]. 煤炭科学技术,2013,419138–142. YIN Shangxian,XU Bin,XU Hui,et al. Study on height cal- culation of water conducted fractured zone caused by fully mechanized mining[J]. Coal Science and Technology,2013, 419138–142. [7] 许家林, 朱卫兵, 王晓振. 基于关键层位置的导水裂隙带高度 预计方法[J]. 煤炭学报,2012,375762–769. XU Jialin,ZHU Weibing,WANG Xiaozhen. New to predict the height of fractured water-conducting zone by location of key strata[J]. Journal of China Coal Society,2012,375 762–769. [8] 赵兵朝,刘樟荣,同超,等. 覆岩导水裂缝带高度与开采 参数的关系研究[J]. 采矿与安全工程学报,2015,324 634–638. ZHAO Bingchao,LIU Zhangrong,TONG Chao,et al. Relation between height of water flowing fractured zone and mining pa- rameters[J]. Journal of Mining and Safety Engineering,2015, 324634–638. [9] 李文生, 李文, 尹尚先. 综采一次采全高顶板导水裂缝带发育 高度研究[J]. 煤炭科学技术,2012,406104–107. LI Wensheng,LI Wen,YIN Shangxian. Study on development height of water flow crack zone in roof above fully mechanized one passing full seam mining face[J]. Coal Science and Tech- nology,2012,406104–107. [10] 赵兵朝,王守印,刘晋波,等. 榆阳矿区覆岩导水裂缝带发育 高度研究[J]. 西安科技大学学报,2016,363343–348. ZHAO Bingchao, WANG Shouyin, LIU Jinbo, et al. Height of water flowing fractured zone in Yuyang mining area[J]. Journal of Xi’an University of Science and Technology,2016,363343–348. [11] 汪华君,姜福兴,成云海,等. 覆岩导水裂隙带高度的微地震 MS监测研究[J]. 煤炭工程,2006,38374–76. WANG Huajun, JIANG Fuxing, CHENG Yunhai, et al. Study on the height of water flowing fractured zone by micro-seismic monitoring[J]. Coal Engineering,2006,38374–76. [12] 杨建立, 滕永海. 综采放顶煤导水裂缝带发育规律分析[J]. 煤 炭科学技术,2009,3712100–102. YANG Jianli,TENG Yonghai. Study on development law of water conducted fracture zone in top coal of fully mechanized top coal caving mining face[J]. Coal Science and Technology, 2009,3712100–102. [13] 黄庆享, 蔚保宁, 张文忠. 浅埋煤层黏土隔水层下行裂隙弥合 研究[J]. 采矿与安全工程学报,2010,27135–39. 下转第 107 页 ChaoXing 第 1 期 李超峰等 煤层顶板导水裂缝带高度综合探查技术 107 Protection,2010,37675–77. [16] 李文生, 李文, 尹尚先. 综采一次采全高顶板导水裂缝带发育 高度研究[J]. 煤炭科学技术,2012,406104–107. LI Wensheng,LI wen,YIN Shangxian. Study on development height of water flow crack zone in roof above fully mechanized one passing full seam mining face[J]. Coal Science and Tech- nology,2012,406104–107. [17] MENDECKI A J. Seismic monitoring in mines[M]. London Chapman and Hall,1997. [18] 郝育喜, 李化敏, 袁瑞甫, 等. 煤柱稳定性的微震监测研究[J]. 煤炭工程,2012,441164–67. HAO Yuxi,LI Huamin,YUAN Ruifu,et al. Study on micro seismic monitoring and measuring of coal pillar stability[J]. Coal Engineering,2012,441164–67. [19] 吕长国,窦林名,何江,等. 遗留煤柱影响区域微震活动规律 研究[J]. 煤炭工程,2011,43178–81. LYU Changguo,DOU Linming,HE Jiang,et al. Study on micro seismic activity law of area affected by left coal pillars[J]. Coal Engineering,2011,43178–81. [20] 高保彬,高佳佳,袁东升. 基于 UDEC 的大采高覆岩破裂的 模拟与分析[J]. 湖南科技大学学报自然科学版, 2013, 282 1–6. GAO Baobin,GAO Jiajia,YUAN Dongsheng. Simulation and analysis of overlying strata fracture in large mining height top-coal caving face of coal seams based on UDEC[J]. Journal of Hunan University of Science TechnologyNatural Science Edition,2013,2821–6. [21] 李振峰,靳晓敏. 应用 UDEC 进行顶板“三带”范围划分的数 值模拟研究[J]. 矿业安全与环保,2015,42421–24. LI Zhenfeng,JIN Xiaomin. Numerical simulation research on scope division of “three zones” in roof with UDEC[J]. Mining Safety Environmental Protection,2015,424 21–24. 责任编辑 张宏 上接第 100 页 HUANG Qingxiang, WEI Baoning, ZHANG Wenzhong. Study of down ward crack closing of clay aquiclude in shallowly bur- ied coal seam[J]. Journal of Mining and Safety Engineering, 2010,27135–39. [14] 王双明,黄庆享,范立民,等. 生态脆弱区煤炭开发与生态水 位保护[M]. 北京科学出版社,2010. [15] 刘英锋, 郭小铭. 导水裂缝带部分波及顶板含水层条件下涌水 量预测[J]. 煤田地质与勘探,2016,44597–107. LIU Yingfeng,GUO Xiaoming. Prediction of water inflow in roof aquifer affected by water-flowing fracture zone[J]. Coal Ge- ology Exploration,2016,44597–107. [16] 李涛,冯海,王苏健,等. 微电阻率扫描成像测井探测采动土 层导水裂隙研究[J]. 煤炭科学与技术,2016,44852–55. LI Tao,FENG Hai,WANG Sujian,et al. Study on micro re- sistivity scan imaging logging applied to detect water flow cracks of mining soil layer[J]. Coal Science and Technology,2016, 44852–55. [17] 郭宁. 微电阻率扫描成像测井在裂缝识别中的应用[J]. 装备 制造,2014增刊 161,69. GUO Ning. Application of micro resistivity scanning imaging logging in fracture identification[J]. China Equipment , 2014S161,69. 责任编辑 张宏 ChaoXing