180 滚筒采煤机截割部的设计.doc
滚筒采煤机截割部的设计 1 引言 煤是重要的能源物质,在我国有着很大的储量。采煤一直以来都被人们看作一 项非常危险的事情。在以前国内有很多小型煤窑,由于规模小,技术落后,大部分 都是靠人工进行挖煤、运输煤。因此经常出现各种事故,而且大量浪费了资源。大 型的采煤机械的出现使这一现象得到了改观。采煤机作为采煤的主要工具是实现煤 矿生产机械化和现代化的重要设备之一。机械化采煤可以减轻体力劳动、提高安全 性,达到高产量、高效率、低消耗的目的。它对提高煤的采掘效率有着重要的影响。 因此国内外采煤机的设计、改进一直都在以较快的速度向前发展。 最早的滚筒采煤机出现在英国,它是把截煤机的减速箱部分改成允许安装一根 横轴和截割滚筒。由于其水平轴截割滚筒的设计优于截煤机,因此其改进型比刨煤 机更适宜英国开采条件,但在 20世纪 50年代这种采煤机并非是唯一应用的采煤设 备。另外有一种有竞争的采煤机是钻削式采煤机。这种采煤机配有一个按螺钻原理 设计的主截割部,其应用范围主要局限与薄煤层。 滚筒采煤机经过多次改进设计而得到不断的发展。最早设计的滚筒采煤机仅能 单向采煤,输送机和液压支架在向前推移之前,留在轨道上采出的煤在回空段被装 载。后来又研发了双向采煤的滚筒采煤机。然而由于这种采煤机受到调向的限制, 加之固定滚筒缺乏自由性,因此摇臂滚筒采煤机应运而生。 20世纪60年代末,久益公司生产出10CM、11CM 系列的连续采煤机,它是现代这 种机型的雏形。到70年代末,在11CM型基础上又生产出12CM系列连续采煤机。经过 对12CM系列连续采煤机的不断改进、完善和提高,生产出适用于开采中硬煤层的 12CM1210B、 12CM1810D和B型机, 以及适用于特别坚硬煤层的12HM31C型和B型机 神东常用12CM1210B、12CM1810D。 80年代后期至今连续采煤机在采煤业中得 到了广泛的应用,并且得到了长足的发展。我国对这种连续型采煤机的应用始于 70年代中期。那时主要靠引进外国的产品, 80年代以前主要是引进单机。随着国内采 煤机技术的发展到了 90年代变成以配套引进为主。目前国内在采煤机研发和设计方 面和国外有很大的差距。煤炭科学研究总院太原分院早在1990年就开始进行连续采 煤机的研究,曾完成了轻型连续采煤机的设计、引进设备的国产化大修等工作。煤 炭科学研究总院上海分院也承担了一些项目。尽管国内各大科研院所、生产厂家、 煤矿企业曾开展过规模不等的连续采煤机等技术的国产化研究, 但均存在一些问题, 仍没有真正在煤矿上见到国产连采机的新产品。 我国引进连续采煤机早期使用效果不好的主要问题是连续采煤机及其配套设 备体积大、吨位高,我国老矿井条件受到限制,设备下井困难;缺乏支护、清道、 除尘等配套设备,生产能力受到一定限制;引进的连续采煤机设备电气防爆性能与 我国防爆标准不一致;主要部件或零件在国内买不到,备件进口渠道不畅通、价格 昂贵;国内没有对连续采煤机开采的成套技术进行系统研究;对回采工艺,支护方 式和工艺及煤岩柱控制等相关问题没有得到闭,对通风管理不利;对有自然发火危 险的矿井,煤体暴露多,带来了安全隐患。因此我国需要自己对采煤机进行设计、 改进使其适合我国的煤矿生产情况。 连续采煤机的特点是截割滚筒长,截割功率大,因此截割能力强,生产效率高, 调动灵活,可控性好。尚需研究的主要内容如下。 1 连续采煤机总体参数的研究。机器牵引力及速度的确定,滚筒长度、直径、 功率、转速及切割牵引力大小和变化等研究。 2 整机截割稳定性的研究。机器的重心位置、截割臂长度、截割速度、功率等 切割参数对机器工作稳定性的影响。 3 截割机构方式的研究。根据电机不同的安装形式,其截割机构方式的确定须 进行专项调查研究与分析对比。 4 切割技术的研究。截割滚筒上截齿排列对机器的截割效率、振动及截齿的寿 命有着重要的影响,必须利用计算机进行截齿排列优化设计和实验室模拟试验。 5 行走电机变频调速系统的研究。连续采煤机工作时,需要频繁调动;截割时, 根据煤的硬度,行走速度在04m/rain之间自动调整,以适应截割电 动机的工作特性;调动时,需以20m/rain的行走速度实现快速调动。 6 机器的自动控制、工况检测和故障诊断系统的研究。连续采煤机常在环境恶 劣、安全得不到保障的工况下工作,因此必须使机器具有自动化控制功能,装设离 机摇控系统。为了提高机器的可靠性,需研制工况检测和故障诊断系统,使连续采 煤机具有监控电流、电压、电机功率、油温油位油压等的自动监测、存储、显示、 报警及故障提示等功能。 7 机载集尘装置的研究。需进行水喷雾集尘系统的试验研究。 8 对专用电动机、传感器、扭矩轴等特性元部件的研究。 我国在长期煤炭生产实践中,也已陆续研制生产了一系列国产采煤机,并且在 借鉴国外先进机型的基础上,迅速发展了大功率电牵引采煤机总装机功率达1 400KW 以上, 但是和国外先进的技术和设备相比较还有很大的差距。 因此我们必须 抓住机遇,加快采煤机的设计和改进步伐,加快缩短与国外技术和设备的差距。 关于采煤机的设计可以从以下方面着手进行改进设计 1 横向布置多个电动机。即将截割部、牵引部、泵站和破碎机构设计成横向布 置方式。采用这种电动机布置方式,可将摇臂回转传动装置取消,而代之不传动功 率的铰接轴,简化了结构,减少了薄弱环节和故障因素;可将传动链中锥齿轮取消, 消除了加工、装配、维修锥齿轮的复杂工艺,提高了可靠性;各电动机传动系统功 能单一,无过轴、旁轮等多余饥件和交叉重叠环节,部件为自封闭,部件之间无饥 械传动, 只有管线等柔性联接,故结构简单、紧凑、机身长度可缩短;便于组装拆 卸及在维修更换部件、换摇臂及截割电动机时不需拆卸底托架和对口螺栓。 2将机身设计成使部件可侧面拉装的整体箱式。即整个机身是个箱形结构的焊 接件,根据需要分成若干个间隔室,安放变压器电控部 电牵引部、液压站等部分; 而在采空区一侧将其敞开,可以将上述具有自封结构的部件方便地装入固定和拆下 拉出,而机身两端铰接的截割部及其电动机也可以从采空区侧拆装。采用这种机身 设计方式,可以为井下组装维修创造更方便快捷的条件,同时可实现整个机身无对 口螺栓,也无底托架,强度大,刚性好, 免除了螺栓紧固的麻烦可将机身做成两段 拼装,并用液压螺栓紧固。 3 破碎机采用单独电动机传动。即将滚筒做成电动滚筒,由单独电动机经行星 传动机构驱动破碎滚筒。采用这种破碎机驱动方式,可以利用按钮控制破碎机,操 作方便,而且单独电动机还便于控制和保护。 改进挡煤板传动装置。即用中低速摆线马达,通过内齿轮或柱销传动。比如, 可在挡煤板回转臂环架圆周安装轴向柱销,利用固装在摇臂上的液压马达带动长牙 齿轮驱动柱销翻转挡煤板。采用这种挡煤板传动装置,可使挡煤板结构更可靠,且 不怕煤粉堵塞,不易存煤泥,可大幅减少故障。 4增大截煤深度。截深在750mm 以上方能称为大截深,由于加大了截深,相应 的滚筒轴、 轴承和摇臂强度也应加大, 同时适当增大螺旋叶片的升角一般大于等于 20,以改善装煤效果。采用强力截齿。由于速度加大,截齿的切削厚度增大, 可 采用齿伸较长120mm -l50mm 左右、大断面齿柄30*50ram、硬质合金片厚度达 l8ram以上的强力截齿,同时加大齿座尺寸和强度,这样可减少截齿数、降低截齿消 耗、增大块煤率和降低煤尘。 5 增大块煤率,减少煤尘生成。即采用双行星传动截割头,适当降低滚筒转速, 使其转速在2224r/rain左右,以增大块煤率,减少二次破碎;或减少截齿数,增 大截距60ram左右以使块煤率增加; 滚筒结构上还可采用碟形端盘开窗口, 轮毂采 用锥形或指数曲线形,以使截落的煤快速排出,从而减少二次破碎;此外还可在螺 旋叶片上采用盘形滚刀以及采用抽风和吸尘滚筒。加设高压水射流喷雾装置。即在 采煤机上加装增压水泵6070kW ,使喷雾水压达到l8MPa以上,流量达到140L/ min以上,这样可有效降低煤尘和防止截割时产生火花。 另外减少喷雾喷嘴的直径0.50.8ram,可形成高压射流,起到辅助切割作 用,以减少截齿受力,降低能耗。同时还可加设流量压力自动控制型水泵,使采煤 机滚筒只在割煤时喷雾洒水,以节约水能源。 改进滚筒材质和结构。 即采用国际最新耐磨合金钢板制造滚筒, 以提高其刚度、 强度和耐磨性,同时加大轮毂板厚度和叶片板厚度。在有条件的情况下,我国煤机 厂可适当引进国外成型高强度滚筒。 由上述分析,我们确定了我国新型采煤机的设计的大方向以及在设计中应该注 意的方面。下面我就对本次采煤机设计作一个总体的介绍。 本次采煤机设计采用电牵引,多电机横向布置。该机具有电机横摆、结构先进、 运行可靠、可实现电液互换、大功率能力强等特点。截割电机、牵引电机的启动、 停止等操作采用旋转开关控制外,其余控制如牵引速度调整、方向设定、左右摇臂 的升降, 急停等操作均由设在机身两端操作站的按钮进行控制, 操作简单、 方便。 所 有电机横向布置。机械传动都是直齿传动。电机、行走箱驱动轮组件等均可从老塘 侧抽出。故传动效率 高,容易安装和维护。采用强力耐磨滚筒,提高割煤效果和滚 筒寿命,降低截齿消耗量和用户成本。可通过更换电控部或液压传动部而成为交流 变频调速电牵引或液压牵引采煤机以实现电液互换, 而其它 部件通用。 两动力输入 部位可安装液压马达,也可安装40Kw牵引电机。两种形式联接尺寸相同。 2 方案选定 1 滚筒的数量和位置 滚筒采煤机有单滚筒和双滚筒之分。由于滚筒直径不宜过大,当煤层较厚 单滚筒采煤机往返截割两个行程才能推进一个截深;双滚筒采煤机每截割一个行程 就可以推进一个截深,对煤层变化和顶板、底板的起伏,适应性也好。在滚筒采煤 机的设计中虽然也曾出现过三滚筒或四滚筒,但因出煤碎、粉尘多、结构复杂,却 对提高采煤机性能无益,故不予考虑。综上述本次设计采用双滚筒。 对于双滚筒可有两种位置布置,一是对称布置于两端,另一种就是两滚筒都布 置于一端即采用不对称布置。不对称布置虽然设计相对简单,但是其工作稳定性不 好。所谓工作稳定性就是采煤机在工作过程中保持不翻转、倾斜和不脱离导向物的 能力。工作稳定性好将有利于正常工作。而对称布置的滚筒采煤机受到的外力基本 是平衡的,因而工作稳定性较好。因此采用双滚筒对称布置。 2 调高方式 本机采用摇臂调高,这种调高方式不仅调高范围大,并且随时可以调高。 3 摇臂 采用大角度弯摇臂。这样可以加大过煤空间,提高装煤效果,卧底量大。 4 轴承 轴承主要有滑动轴承和滚动轴承。滑动轴承的润滑和密封条件一般都比较差, 轴承的磨损可能引起摇臂较大的径向窜动。截割部主减速箱最后一级传动不宜用圆 锥齿轮,以免摇臂的径向窜动严重影响齿轮的啮合质量。滚动轴承的密封和润滑问 题比较好解决,轴承的磨损也比较轻微。本机采用滚动轴承。 5 牵引方式 滚筒采煤机有各种不同的牵引方式。牵引部和截割部联结成一个整体,在工作 面上来回移动,称为内牵引。工作面上只有截割部,却把牵引部设在工作面短头上 下顺槽里,牵引部不跟截割部一起移动,只随工作面向前推移,则为外牵引。外牵 引只能为有链牵引,而内牵引可以为有链条牵引和无链牵引。有链牵引有断链和跳 链的危险, 链条的弹性振动和链传动造成的速度脉动, 使采煤机受到较大的动负荷, 链条对于滚筒的装载、运输机和液压支架的推移也有一定的妨碍,所以有链牵引有 很多不足之处。而无链牵引和有链牵引相比具有很多优点 1采煤机移动比较平稳,保证了采煤机的载荷比较稳定; 2 提高了设备的可靠性和生产的安全; 3 采煤机移动所消耗的能量较少; 4采煤机的运转噪音较低,有利于改善工作面的劳动条件; 5 提高了采煤机的爬坡能力; 6 在一个工作面上可能采用多台采煤机同时作业,以提高工作面量。通过以上 比较本机采用无链牵引中的液压传动。 6 驱动方式 采煤机驱动的方式有萨那种 1 单驱动方式用一台电动机驱动采煤机的各个部分,包括牵引部、全部 截割部及其他辅助装置等‘ 2 分别驱动方式各截割部由单独的电动机驱动,牵引部和其他辅助装置 可以由截割部电动机驱动,或另设电动机驱动; 3 联合驱动方式把两台电动机结合成整体,共同驱动采煤机的各部分。 分别驱动时,各电动机的功率一般相同。双滚筒采煤机每台截割部电动机的功 率只有单机驱动和联合驱动时的一半,截割部可以设计的较小,且结构简单,可以 取消易引起发热等问题的横贯牵引部的过轴。本次设计采用分别驱动方式,用两个 250KW的电机分别驱动两个截割部, 用两个40KW的电动机驱动牵引部, 也可用液压马 达驱动牵引部。 7 采煤机的附属设备 灭尘方式采煤机在工作中会产生很多的粉尘,需要采取多方面的处理措施。 主要有喷雾灭尘、泡沫灭尘和吸尘器捕尘。喷雾灭尘就是用喷嘴把具有一定压力的 水高度扩散,使其雾化,形成把粉尘源与外界隔离的水幕。泡沫灭尘虽然具有一定 的优点但是泡沫灭尘需要较复杂的设备,目前还不能大量生产高效、无毒和廉价的 泡沫剂,因此在采煤机上未能得到推广。吸尘器从粉尘源吸取尘空气,排入捕尘器, 利用扩散、碰撞或离心力等,使粉尘与空气分离,沉积在捕尘器的壳体内壁,然后 用水冲洗排入运输机,净化空气直接排出。通过吸尘器的粉尘约95-98,灭尘效率 相当高。但是,吸风管口要靠近粉尘源,吸入的含尘空气要多,否则含尘空气在旁 边流走,就达不到净化空气的目的了。本机采用喷雾灭尘方式。喷雾灭尘有可分为 内喷雾灭尘和外喷雾灭尘,在这里我们选择内外喷雾结合灭尘。 3 滚筒采煤机的总体设计及计算 3.1 本采煤机采用双滚筒对称布置, 采用液压缸调高, 调高范围 1.33.0 米 。 由经验和理论基础取滚筒水平中心距为10810mm、 两摇臂铰接中心距为6700mm、 两牵 引轮中心距为5591mm, 机身宽为1210mm。 3.2 采高为1.63.2米。截深为 0.62m 0.66m。滚筒直径分别为1400m 1600m。牵引速度为08米/分 3.3 设计生产功率 [1] Q 60JHVqγ 3-1 式中 J 滚筒的有效截深米J 0.63; H 采煤机的平均采高米H 2.4; Vq 采煤机的最大工作牵引速度米/分Vq 8; γ 1.35煤的重率吨/2 米 。 Q 600.632.481.35 979.7吨/时 979.7/60吨/分 3.4 装机功率 [1]12600.60.4WBX WBXQN H HK K 3-2 312 600.60.4WBXQ HKK K 千瓦 式中 1K功率利用系数,以为该机的驱动方式为分别驱动所以 1K0.8。 2K功率水平系数,由表31查得 2K0.9。 3K后滚筒的工作条件系数, 3K0.8。 WBH采煤机的比能耗,由表32查得 WBH0.44KW.h/T。 WBXHXWBAHA XA≈ A 300N/mm。 0.44. /WBX WBH H KW h T 。 3WBX WBX H K H 60979.70.60.40.8600.80.9 N 550KW 取 N 591KW。 表31功率水平系数 2 K 表32螺旋滚筒采煤机比能耗 WB H 3.5 弯摇臂 2055.02mm,摇臂上摆角36.3,下摆角17.3。 装机功率P591KW, 机重36T。本机采用无链牵引,多电动机横向布置同时驱动,可以电液互换。截割电 机功率为2250 500KW。电牵引速度为08m/min,液压牵引速度为06.9 m/min。滚筒转速4050r/min。灭尘方式内外喷雾。 4 滚筒采煤机截割部设计 4.1 螺旋滚筒设计 [1] [17] [12] 螺旋滚筒是一个带有螺旋叶片的圆柱体,刀具装在焊于螺旋叶片上的齿座中, 工作时滚筒转动并作径向移动,截割破碎煤炭,再由螺旋叶片把煤沿滚筒的轴线方 向推运出来,装进工作面运输机。 通常所说的滚筒直径是指刀尖所在的圆的直径 cD。齿座焊到叶片上后,螺旋叶 片的最大回转直径, 称为叶片直径 yD。 螺旋叶片的内缘和筒彀相结合处的直径 gD称 为筒彀直径。 4.1.1 螺旋叶片的表面是螺旋面,其上任意点的螺旋升角为 iiiSa D p 4-1 式中 iD、 iS 该点所在螺旋线的直径和螺距采用多头螺旋滚筒时则应为导 程。 4.1.2 切削厚度[1] max100. qvhn m 厘米 4-2 式中 max h最大切削厚度; m刀具同一条轨迹截线上安设的刀具数; n滚筒的转速转/分; qv牵引速度米/分。 刀具的平均切削厚度可用月牙形面积和截割长度相除而得 max263.8qccvD h D n m p p h 式中 p h 平均切削厚度。 4.1.3 螺旋滚筒的转向 为了保证螺旋叶片向运输机装煤, 而不是向煤壁推煤, 滚筒叶片的螺旋方向应 与滚筒转向相适应。站在采空区一侧看滚筒,右螺旋滚筒应是顺时针方向转动,左 螺旋滚筒应是逆时针方向转动。在采煤机往返采煤的过程中,滚筒转向虽然不变, 却有两种不同的情况顺转时,刀具截割方向与碎煤下落方向相同;逆转时,刀具 截割方向与碎煤下落的方向相反。为了增强采煤机的工作稳定性,避免两个滚筒受 到的截割阻力方向相同,双滚筒采煤机的两个滚筒的转向应该相反。两滚筒的转向 有前顺后逆和前逆和顺两种方案。 滚筒直径较大时, 滚筒生产率大于运输机生产率, 确定滚筒转向应偏重于节省能耗和提高工作稳定性及操作安全的要求。前滚筒截煤 量大于后滚筒,后滚筒装煤量大于前滚筒,是采煤机骑座运输机工作的一般情况, 因此在该采煤机中滚筒采用前顺后逆。 4.1.4 滚筒的三个直径 双滚筒采煤机一般要在每个行程中开采全部采高, 滚筒直径不宜小于采高的 一半。根据保持两滚筒装煤量相同的要求确定滚筒的直径,设滚筒直径 cD与采高H 的比值为a,滚筒的装载效率是η,则 AH 1-aH 1-ηah 4-3 aH和1-aH分别是两个滚筒的截割高度,1-ηah是前滚筒丢剩的浮煤量,应 由后滚筒装走。整理即得 11a h 大直径滚筒的装载效率约为7080,所以a 0.6。 cD 0.6H 0.61.60.63.2 0.961.98米 由经验类比取两滚筒的 cD分别为1.4米和1.6米。 滚筒的最大切削厚度受到最大截距的限制 maxmax2t bhtg j - 4-4 式中 max t滚筒刀具的最大截距厘米; b 刀 具的截 刃宽度 厘 米截 刃宽一般取1220mm,本机 取b 15mm1.5cm; j截槽侧面的崩角,由表41取值。 j38。 表41截槽崩裂角与煤质和切削厚度的关系 maxmax2tan t bh j - 整理得 max max2tan t h b j 2078137751.513.6cm 为了避免螺旋叶片与截槽间残留的煤棱相抵触,滚筒的最大切削厚度不得超过刀具 伸出刀座长度的70,即 max t 0.7 c yt b c g D D j -- 4-5 整理得 max1.43 y cD D ctg t b j -- ≦ cD-22.151600-221.5 1278.5mm 取 yD1.2m, 叶片直径与筒彀直径应保持适当的比例,大直径滚筒应保持比值 y gDD大于或者等于2。因此取 0.62y gDD m 4.1.5 对于直径为1.5米左右的滚筒,螺旋升角 20ya 。 4.1.6 螺旋头数。实验研究证明叶片螺旋头数对滚筒装煤过程的影响很小。但是 为了调节滚筒叶片的螺旋升角常采用多头螺旋。双头螺旋滚筒每条皆线上可以安装 12把刀。在设计时,应使叶片高度 2y gD D - 和叶片间距 t S n 保持适当的比例,应使 y g KD D - t 2S n 4-6 式中 S 螺旋线导程; t n 螺旋头数。 大直径滚筒K0.8,因此 ..2t y gn D DS K - 21.20.60.82 - 0.48m48mm 取S50mm。 4.1.7 截齿 [11] [1] 采煤机滚筒设计的一个重要问题是截齿配置,基本要求是采出的块煤要多, 产生的煤尘要小,截割阻力和牵引力要比较均衡地作用在滚筒上。这些要求若能实 现,则采煤机使用寿命延长,同时也将提高煤的售价,保护了井下工作人员的身体 健康。块煤率的大小与截齿的尺寸、安装数量以及排列方式都有较大的关系,加大 截齿的伸出长度或减少截齿的数量都可以提高块煤率,但这将会加剧整个采煤机的 振动,影响采煤机的使用寿命。 图4-1、采煤机滚筒端面结构图 1.端盘端面截齿 2.端盘截齿3.叶片截齿 端盘截齿的作用是平衡轴向力与自开缺口。 1端盘截齿的工作条件接近为半封闭, 截齿负荷大, 消耗的功率占工作机构的 1/3左右,端盘截齿消耗占滚筒截齿消耗的一半左右,故其截距要缩小,每条截线 上安装的截齿数要增多。 。 端盘端面安装有6个端面截齿,以利于采煤机开缺口及防 止端盘接触煤壁,增加摩擦和磨损。端盘截齿截距从煤壁向外逐渐加大,即18mm一 28mm一34mm 40 mm。 2滚筒截齿在截煤过程中所产生的振动对采煤机截割部内的各部件及整个采 煤机的使用寿命和工作可靠性的影响都是极为严重的。产生振动的原因除了煤是脆 性非均匀材料外,另一个较重要的因素是滚筒本身的结构。切槽断面形状不对称是 产生截齿侧向力的根本原因 J,所有截齿的侧向力之和就形成了沿滚筒轴向作用的 滚筒侧向力,这个力对采煤机的稳定性起着决定性的作用,侧向不平衡力大小的不 断变化导致了滚筒、摇臂以及整个采煤机沿着这个方向振动。因此在每组截齿中设 置一个向采空区负倾斜截齿,用以平衡轴向力,以减轻采煤机的振动,提高采煤机 的稳定性。 3开道截齿采用零度齿, 这样对截割是最有利的, 因为开道截齿是在半封闭一 封闭截槽里工作,条件最差,当它开出一个自由面后,即为以后截齿开创了良好的 工作条件。端盘的截割宽度为120 mm,与滚筒的有效截深630 mm相比只是很小的一 个宽度,但对整个滚筒的影响却是不能忽视的。 对截齿的基本要求是 1耐磨性要好; 2截齿的几何形状要能适应不同的煤质和截割条件,截割比能耗要低; 3拆装截齿要简便迅速,安装固定要可靠,以免截齿丢失; 4截齿及其固定装置的结构应尽量简单,以利制造和维护。 滚筒采煤机采用的截齿基本可分为两大类扁截齿和镐型截齿。该滚筒选用扁 截齿。根据设计经验,类比去截角α25、前角β90-α5、后角γ18、 侧角 j 6、尖角ω3。截刃b取15mm。 4.1.8 截齿的材料以及截齿的固定 为了保证截齿的强度和耐磨性,截齿齿身常用3035CrMnSi,3035SiMnV或者 40Cr钢制作,并经调质处理。为了减少截齿的丢失和更换截齿所消耗的时间,要求 截齿装拆方便而固定可靠。由于截煤过程中截齿受到的载荷较重,且有振动所以现 代采煤机多采用弹性元件固定截齿。 该机的滚筒采用弹簧钢丝挡住柱销来固定截齿。 4.2 截割部减速器传动系统特点; 截割部减速器要传递采煤机的绝大部分装机功率,载荷重而不稳定,工作条件 恶劣,可靠性要求高,外形和尺寸却受到工作环境的严格限制。截割部减速器的强 度、刚度、润滑、密封、效率和散热等问题,都应予以着重考虑。 由以往的经验,以及原来采煤机的传动系统可以了解到滚筒采煤机截割部减速 器传动系统都具有以下特点 1由于滚筒轴和电机轴互相垂直,传动系统中必须有一队圆锥齿轮; 2截割部系统中还应该有一个离合器或者一个离合齿轮, 当离合器或离合齿轮 脱开时,调高泵应仍能获得动力。 3为了操作轻便, 离合器或离合齿轮不设在低速轴上; 为了避免圆锥齿轮的模 数过大,圆锥齿轮也不宜设在低速轴上。 4.2.1 截割部摇臂传动系统 图 4-2、截割部传动系统图 4.2.3 各齿轮的基本尺寸及相关计算 [7] 由于采煤机齿轮采用较大的变位系数,齿轮的最小齿数一般为 13或者 14。但 第一级齿轮转速很高,齿数不宜太小。本传动系统中齿轮的最小齿数取 14,第一级 齿轮的齿数取 19。齿轮受到偏载常使齿轮端部折断。为了避免偏载,特别是为了消 除机壳刚度不足造成的偏载的影响,齿轮可沿齿宽方向进行鼓形修缘,修缘量为 0.10.15mm。 1Z1Z 19,m 7; 齿距 P πm 21.98; 齿顶高 a h m 7; 齿根高 f h 1.25m 8.75; 齿高 h 2.25m 15.75; 分度圆直径 d mZ 133; 齿顶圆直径 a d mZ2 147; 齿根圆直径 f d mZ-2.5115.5; 2Z2 Z 33,m 7; 齿距 P πm 21.98; 齿顶高 a h m 7; 齿根高 f h 1.25m 8.75; 齿高 h 2.25m 15.75; 分度圆直径 d mZ 231; 齿顶圆直径 a d mZ2 245; 齿根圆直径 f d mZ-2.5213.5; 3Z3 Z 34,m 7; 齿距 P πm 21.98; 齿顶高 a h m 7; 齿根高 f h 1.25m 8.75; 齿高 h 2.25m 15.75; 分度圆直径 d mZ 238; 齿顶圆直径 a d mZ2 252; 齿根圆直径 f d mZ-2.5220.5; 4Z4 Z 25,m 8; 齿距 P πm 25.12; 齿顶高 a h m 8; 齿根高 f h 1.25m 10; 齿高 h 2.25m 18; 分度圆直径 d mZ 200; 齿顶圆直径 a d mZ2 216; 齿根圆直径 f d mZ-2.5180; 5Z5 Z 34, m 8; 齿距 P πm 25.12; 齿顶高 a h m 8; 齿根高 f h 1.25m 10; 齿高 h 2.25m 18; 分度圆直径 d mZ 272; 齿顶圆直径 a d mZ2 288; 齿根圆直径 f d mZ-2.5252; 6Z7 Z 28,m 10; 齿距 P πm 31.4; 齿顶高 a h m 10; 齿根高 f h 1.25m 12.5; 齿高 h 2.25m 22.5; 分度圆直径 d mZ 280; 齿顶圆直径 a d mZ2 300; 齿根圆直径 f d mZ-2.5255; 7Z9 Z 39,m 10; 齿距 P πm 31.4; 齿顶高 a h m 10; 齿根高 f h 1.25m 12.5; 齿高 h 2.25m 22.5; 分度圆直径 d mZ 390; 齿顶圆直径 a d mZ2 410; 齿根圆直径 f d mZ-2.5365; 8Z11 Z 14,m 8; 齿距 P πm 25.12; 齿顶高 a h m 8; 齿根高 f h 1.25m 10; 齿高 h 2.25m 18; 分度圆直径 d mZ 112; 齿顶圆直径 a d mZ2 128; 齿根圆直径 f d mZ-2.592; 9Z12 Z 66,m 8; 齿距 P πm 25.12; 齿顶高 a h m 8; 齿根高 f h 1.25m 10; 齿高 h 2.25m 18; 分度圆直径 d mZ 528; 齿顶圆直径ad mZ2 544; 齿根圆直径fd mZ-2.5508; 图 4-3、齿轮结构 图 4-4、齿轮结构图 4.2.4 传动比以及输出转速 4.2.4.1 传动比 高速传动比 i 34/1933/2639/17166/1429.774; 中速传动比 i 34/1934/2539/17166/1431.904; 低速传动比 i 34/1936/2339/17166/1436.718; 4.2.4.2 输出转速 采煤机电动机的额定转速一般为 14601475 转/分。本机采用 YBCS4250C 型 电机,功率为 250KW,电压 1140V,转速 1476r/min。输出转速 高速 n 1476/i 1476/29.774 49.6r/min ; 中速 n 1476/i 1476/31.904 46.3r/min ; 低速 n 1476/i 1476/36.718 40.2r/min ; 4.2.5 各轴承选用的规格和代号 采煤机中普遍采用滚动轴承。适应采煤机载荷重而尺寸受到严格限制的特点,本采 4.2.6 滚筒采煤机的摇臂 [14] 采煤机摇臂是采煤机的关键部件,结构复杂,不规则。它的一端联接截割滚筒,一 端接电机。电机经过多级齿轮传动,将动力传给滚筒,齿轮轴通过轴承安装在摇臂 上。本机采用弯摇臂,摇臂长度为2055.02mm。摇臂上摆角36.3,下摆角17.3。 4-5采煤机摇臂壳简图 1、2、3、4、5、6工艺基准块 4.2.7 截割部减速器的润滑 采用飞溅润滑时,油面位置应适当,使润滑油能被转动的齿轮溅到啮合面上, 同时也甩到箱壁上,以利散热,轴承也应获得必要的润滑。减速器的轴布置在同一 水平或接近同一水平,润滑效果一般较好。飞溅润滑的优点是润滑强度高,散热 快,对润滑油的粘度变化和杂质不敏感,也不要添加润滑设备。但当采煤机在倾斜 煤层中工作时,润滑油集中在低处,位于高处的传动件润滑条件较差。为了保证正 常的润滑条件,应避免加速器过长,如不可避免,应将减速器内腔分隔成几个独立 油池。 摇臂减速器的润滑是个特殊的问题。当摇臂下倾,滚筒截割底煤时,摇臂内的润 滑油积在端头;反之,上倾截割顶煤时,摇臂端头的齿轮得不到良好的润滑。为了 解决这个问题,需设置回油装置。 另外为了保证喷油润滑系统能正常工作,需要设置过滤器、流量监测元件和油位 指示器等。采煤机摇臂和机头减速箱连接处,支承摇臂套的轴承载荷重而运动速度 很低,滚筒轴靠近煤壁处的轴承,载荷也很大,这些轴承最好与截割部减速器隔开, 采用压力注油器定期注入润滑脂。经过实践证明大功率采煤机截割部应采用极压工 业齿轮油。这种油是在齿轮油中加入极压添加剂,以改善油液的品质,提高抗磨性 和抗烧结性。本机在齿轮腔中加注 N320硫磷工业齿轮油。 5 滚筒采煤机的主要技术参数和配套设备 采高m 1.63.2 截深m 0.63;0.66 适应倾角 液压牵引≤40 电牵引≤1535 滚筒直径m 1.4;1.6 滚筒转数r/min 49.6;46.3;40.2 摇臂长度mm 2055.02 摇臂摆动中心距mm 6400 牵引力KN 液压牵引 500;417 电牵引 524;437 牵引速度m/min 液压牵引 05.7;06.9 电牵引 08 牵引型式 电液互换,无链,销轨 机面高度mm 1100;1200 最小卧底量mm 337机面高 1100mm;237机面高 1200mm 灭尘方式 内外喷雾 装机功率KW 225024011 电压V 1140 机重T 36 输送机 SGZ-830/630 SGZ-764/500 SGZ-730/320 支架 ZZS5600/14/25等 电机 型号;YBCS4-250C 功率250KW 电压1140V 转速1476r/min 6 本机的主要特点 1机身矮,装机功率大。截割电机容量调整范围宽。 2整机为无底托架积木式组合结构。各部件之间为干式对接,对接面之间 无任何机械或液压传动关系。机身 三大部件之间使用高强度 T 形螺栓和四个楔形哑铃销以及两个Φ150 定位 销连接和紧固,提高了大部件之间 联接的可靠性。 3截割电机、牵引电机的启动、停止等操作采用旋转开关控制外,其余控 制如牵引速度调整、方向设定、左 右摇臂的升降,急停等操作均由设在机身两端操作站的按钮进行控制,操 作简单、方便。 4所有电机横向布置。机械传动都是直齿传动。电机、行走箱驱动轮组件 等均可从老塘侧抽出。故传动效率 高,容易安装和维护。 5液压系统设计合理,采用集成阀块结构,管路少,连接可靠;经常调整 的阀设在液压箱体外,便于检修和 更换;液压元件全部选用专业厂家的各牌产品,如调高泵选用 A2F12R4P1, 性能稳定,技术可靠。 6截割机械传动链设有扭矩轴过载保护装置,并设有强制润滑冷却系统, 提高了传动件,支承件的使用寿 命。 9截割部采用四行星单浮动结构,承载能力大,减小了结构尺寸。采用大 角度弯摇臂设计,加大过煤空间, 提高装煤效果,卧底量大。 10保证可靠性及使用寿命,传动系统中的轴承和高速端的油封采用进口 件,齿轮材料选用国内最好的钢种 18Cr2Ni4WA军工材料 。 11采用强力耐磨滚筒,提高割煤效果和滚筒寿命,降低截齿消耗量和用 户成本。 12可通过更换电控部或液压传动部而成为交流变频调速电牵引或液压牵 引采煤机以实现电液互换,而其它 部件通用。两动力输入部位可安装液压马达,也可安装 40Kw 牵引电机。两 种形式联接尺寸相同。 13调高油缸与调高液压锁采用分离布置,液压锁置于壳体空腔内,打开 盖板即可取出液压锁, 方便井下查 找故障和更换调高油缸、 液压锁等维修工作。 14行走箱与牵引部为