某铁矿井下空压机硐室降温数值模拟及应用研究.pdf
分类号 密 级 U D C 学 号 硕硕 士士 学学 位位 论论 文文 年 月 日 某铁矿某铁矿井下空压机井下空压机硐室硐室降温降温数值模拟及数值模拟及应用应用研究研究 Numerical Simulation and Practice Research on the Cooling Technology of Air Compressors Cavern in an Iron Ore Mine 学 位 类 别 学术型学位 作 者 姓 名 赖春明 学 科、专 业 安全科学与工程 指 导 教 师 支学艺 副教授 研 究 方 向矿山环境灾害控制理论与技术 江西理工大学硕士学位论文 独创性声明 学位论文独创性声明 本人声明所呈交的论文是本人在导师指导下进行的研究工作及取得的研究成果。据我 所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的 研究成果,也不包含已获得江西理工大学或其他教育机构的学位或证书而使用过的材料。 与我一同工作的同志对本研究所做的任何贡献均已在论文中做了明确的说明并表示谢意。 申请学位论文与资料若有不实之处,本人承担一切相关责任。 研究生签名 时间 年 月 日 学位论文版权使用授权书 本人完全了解江西理工大学关于收集、保存、使用学位论文的规定即学校有权保 存按要求提交的学位论文印刷本和电子版本,学校有权将学位论文的全部或者部分内容 编入有关数据库进行检索,并采用影印、缩印或扫描等复制手段保存、汇编以供查阅和 借阅;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版。本人 允许本学位论文被查阅和借阅,同意学校向国家有关部门或机构送交论文的复印件和电 子版,并通过网络向社会公众提供信息服务。 保密的学位论文在解密后适用本授权书 学位论文作者签名(手写) 导师签名(手写) 签字日期 年 月 日 签字日期 年 月 日 江西理工大学硕士学位论文 摘要 I 摘摘 要要 随着国民经济的不断发展,矿产资源开采量不断增加,迫使大部分矿山转入深部或 地质条件复杂的矿床开采。伴随着开采深度的不断增加,深井高温热害问题已成为制约 采矿业发展的重要因素之一。特别是近年来随着科技的不断发展,越来越多大型设备安 装在井下, 井下机电设备硐室的高温热害尤为严重。 高温工作环境不仅易造成设备故障, 而且严重威胁着工人的身心健康,制约着矿山经济效益的提高。研究井下机电硐室热质 交换机理,采取有效的降温技术措施具有非常重要的现实意义。 本文基于热力学、流体力学和环境工程学等基础学科,在分析空压机硐室主要热源 及空压机工作原理的基础上,对空压机硐室内风流热质交换过程进行了理论分析,得到 了传热微分方程及硐室内风流温度预测方程, 从理论上分析了空压机硐室内的对流换热 过程。同时本文以某铁矿井下空压机硐室为研究对象,从质量守恒、动量守恒和能量守 恒等基本原理出发,建立其数学模型,依据现场实际,建立其物理模型。应用 FLUENT 软件,对特定模型下的空压机硐室内对流换热过程进行了数值模拟,研究了不同入口风 速、入口温度条件下空压机硐室内风流流场、温度场的基本变化规律。通过数值模拟与 温度、风速的现场测试,提出了利用风障调节硐室流场、安装型号为 K-4-№12 的风机 增加风量及降低风流入口温度等综合技术措施对某铁矿井下空压机硐室进行了降温。 研究结果表明温度场受流场分布的影响,硐室形状突变及风流做绕流运动时易形 成高温涡流区;入口温度在 1525℃时,其入口风速 35 m/s 为经济合理风速;当入口 风速超过 5 m/s 时,硐室温度并无明显下降趋势,而采用降低入口风流温度的方法效果 明显;经实践证明,在三台功率为 132KW 的空压机同开的热源条件下,当入口温度 19.4℃,入口风速 3.2 m/s 时,空压机硐室出口的温度降低到 30.1℃,一年多来,硐室内 空压机正常稳定运行。有效的保障了硐室内机械设备的正常运行,为矿井硐室降温提供 理论指导和技术支持,对保证矿山安全生产有重要的现实意义。 关键词井下降温技术;空压机;硐室;Fluent 数值模拟;通风降温; Abstract II Abstract With the development of national economy and the increase of mineral resources exploitation, most of mining work has been forced into deep or complex geological conditions. With the increase of mining depth, the problem of high temperature deep well thermal has become one of the important factors which restrict the development of the mining industry. Especially in recent years, with the continuous development of science and technology, more and more large equipment has installed in underground, thus the harm of heat in cavern of mechanical and electrical equipment is particularly acute. The working environment at a high temperature is not only easy to cause equipment failure, but seriously threats the physical and mental health of workers and the improvement of the economic benefits of the mine.Therefore, to study the mechanism of heat and mass transfer of mine electromechanical cavern and take effective measures of cooling technology have very important practical significance. Based on the thermodynamics, fluid mechanics and environment engineering disciplines, and the major heating source of air compressor in cavern and air compressor working theory has been analyzed, taking the basic principle of conservation of energy into consideration, the heat transfer mechanism and technology of underground electromechanical cavern condition has been theoretical studied.On the premise of meeting basic assumptions for the heat transfer differential equations, basic conditions and the prediction solution for airflow temperature in cavern could be obtained. Theoretical analysis of convective heat transfer process has provided a theoretical basis of air compressor cool temperature in cavern. In this paper, the cavern of air compressor in an iron ore mine has been studied. Based on the quality of conservation, momentum in the basis of the actual site, its physical model has been established. The Fluent software was applied; the numerical simulation the process for cavern air compressor heat transfer has been made, and the basic rule of cavern air compressor’s air velocity and temperature field on different enters’ air velocity and temperature conditions has been researched. Through numerical simulation and field test of temperature and wind speed, then the windbreak was used to adjust the cavern installation and the fan of K - 4 - № 12 was put forword to increase air volume and reduce the romantic inlet temperature, those comprehensive technical measures which could achieve cooling of air Abstract III compressor cavern in the iron ore mine. The results show that the temperature field affected by the distribution of the flow field, the mutation of cavern shape and the wind flow around rcise are easy to high temperature vortex area; When the inlet temperature is 1525℃, the economic and reasonable speed of inlet wind is 35m/s; When the inlet wind speed is more than 5m/s, the cavern temperature is without apparent decline, but the effect of adopting the of lower entrance wind temperature is obvious; the practice has proved that three air compressor which its power is132kw are open for the heating resource ;under this condition,the inlet temperature of 19.4℃, the inlet wind speed 3.2 m/s, the outlet temperature of the cavern reduced to 30.1℃, the air compressor in cavern operates normally and stablely for more than one year. Effective guarantee was ensured the normal operation of the machinery and equipment in the adit indoor which can provide theoretical guidance and technical support for the cooling technology of the mine cavern and important practical significance to ensure mine production safety. Key Words Cooling technology of mines; Air compressors; Cavern; Fluent numerical simulation; Ventilation and cooling; 江西理工大学硕士学位论文 目录 IV 目目 录录 摘 要 ...............................................................................................................................................I Abstract ........................................................................................................................................... II 目 录 ............................................................................................................................................ IV 第一章 绪 论 .................................................................................................................................. 1 1.1 研究背景 ............................................................................................................................... 1 1.1.1 研究背景 ........................................................................................................................ 1 1.1.2 工程背景 ......................................................................................................................... 2 1.2 目的和意义 ........................................................................................................................... 3 1.3 国内外研究现状和进展 ....................................................................................................... 3 1.3.1 矿井降温理论研究现状 ................................................................................................ 3 1.3.2 矿井降温技术研究现状 ................................................................................................ 5 1.3.3 国内外研究现状总结 .................................................................................................... 7 1.4 研究内容与方法 ................................................................................................................... 8 1.4.1 研究主要内容 ................................................................................................................ 8 1.4.2 研究方法 ........................................................................................................................ 8 1.4.3 技术路线 ........................................................................................................................ 9 第二章 井下空压机硐室热质交换理论研究 .............................................................................. 10 2.1 空压机硐室传热过程计算方法分析 ................................................................................. 10 2.2 热源分析 ............................................................................................................................. 11 2.2.1 围岩传热 ...................................................................................................................... 11 2.2.2 风流自压缩热 .............................................................................................................. 12 2.2.3 热水放热 ...................................................................................................................... 12 2.2.4 机电设备散热 .............................................................................................................. 13 2.2.5 人员放热 ...................................................................................................................... 13 2.2.6 其他热源 ...................................................................................................................... 13 2.2.7 井下空压机硐室热源分析 .......................................................................................... 14 2.3 传热理论基础 ..................................................................................................................... 14 2.3.1 热传导 .......................................................................................................................... 14 江西理工大学硕士学位论文 目录 V 2.3.2 对流换热 ...................................................................................................................... 15 2.3.3 对流质交换 .................................................................................................................. 16 2.3.4 热辐射 .......................................................................................................................... 17 2.4 井下空压机硐室对流热交换微分方程 ............................................................................. 17 2.4.1 空压机硐室对流交换理论分析基本假设 .................................................................. 17 2.4.2 空压机硐室对流交换微分方程 .................................................................................. 18 2.5 本章小结 ............................................................................................................................. 19 第三章 FLUENT 数值模拟基础理论与数学模型 ..................................................................... 20 3.1 FLUENT 软件介绍 .............................................................................................................. 20 3.1.1 FLUENT 基本特点 ....................................................................................................... 20 3.1.2 FLUENT 工作流程 ....................................................................................................... 21 3.2 流场模拟理论基础 ............................................................................................................. 21 3.2.1 流场数值计算的方法 .................................................................................................. 21 3.2.2 湍流模型 ...................................................................................................................... 21 3.3 热交换模拟理论基础 ......................................................................................................... 23 3.3.1 导热与对流换热 .......................................................................................................... 23 3.3.2 辐射传热 ...................................................................................................................... 24 3.4 空压机硐室数值模拟的数学模型 ..................................................................................... 24 3.4.1 空压机硐室数值求解微分方程 .................................................................................. 24 3.4.2 流动边界层理论 .......................................................................................................... 25 3.5 本章小结 ............................................................................................................................. 26 第四章 井下空压机硐室降温数值模拟 ...................................................................................... 27 4.1 几何模型的建立 ................................................................................................................. 27 4.1.1 矿山概况 ...................................................................................................................... 27 4.1.2 几何模型 ...................................................................................................................... 28 4.2 模拟前处理 ......................................................................................................................... 29 4.2.1 计算网格的生成 .......................................................................................................... 29 4.2.2 设置边界类型和区域类型 .......................................................................................... 30 4.3 空压机硐室模型的求解计算 ............................................................................................. 31 4.3.1 网格的输入及检查 ...................................................................................................... 31 4.3.2 求解器的选择及参数设定 .......................................................................................... 31 江西理工大学硕士学位论文 目录 VI 4.3.3 空压机硐室温度场速度场的迭代计算 ...................................................................... 33 4.4 空压机硐室数值模拟结果分析 ......................................................................................... 33 4.4.1 空压机硐室风流流场分析 .......................................................................................... 33 4.4.2 空压机硐室温度场分析 .............................................................................................. 37 4.4.3 入口风速对空压机硐室散热的影响分析 .................................................................. 39 4.4.4 入口温度对空压机硐室散热的影响分析 .................................................................. 41 4.4.5 空压机硐室模拟基本结论 .......................................................................................... 42 4.5 本章小结 ............................................................................................................................. 42 第五章 井下空压机硐室降温技术 .............................................................................................. 43 5.1 理论计算与数值模拟的验证 ............................................................................................. 43 5.1.1 硐室基本情况 .............................................................................................................. 43 5.1.2 测试内容与方法 .......................................................................................................... 44 5.1.3 测点布置 ...................................................................................................................... 44 5.1.4 测定结果及分析 .......................................................................................................... 44