富水深埋TBM斜井围岩卸荷特性研究.pdf
富水深埋 TBM 斜井围岩卸荷特性研究 重庆大学博士学位论文 学生姓名熊晓晖 指导教师张永兴 教授 王桂林 教授 专 业土木工程 学科门类工 学 重庆大学土木工程学院 二 O 一五年五月 Unloading Features Research of Surrounding Rock for TBM Construction of Deep Inclined Shaft with Abundant Water A Thesis ted to Chongqing University in Partial Fulfillment of the Requirement for the Degree of Doctor of Engineering By Xiong Xiaohui Supervised by Prof. Zhang Yongxing and Prof. Wang Guilin Specialty Civil Engineering College of Civil Engineering of Chongqing University, Chongqing, China May, 2015 中文摘要 摘 要 由于浅部矿产储量越来越少, 国家与政府对深部矿床开采越来越重视,特别 是煤炭深部资源和开采问题的研究上,得到了极大的关注。随着煤炭开采深度的 加大,对煤矿斜井掘进的技术要求也越来越高,由于 TBM 法相对于传统的施工方 法,在安全、进度、质量、效益等多方面显现优势,在长距离斜井施工中引进 TBM 技术,是煤炭深部资源开采发展的必然趋势,对于我国煤矿建井技术是一场革命, 为煤矿安全、高效生产具有极其重要的社会、经济、现实意义。TBM 法用于富水、 深埋、大坡度的煤矿斜井施工,技术要求复杂,为煤矿的建设带来了新的问题, 另外,由于斜井开挖的卸荷效应和地下水渗流的影响,TBM 斜井施工时围岩的力 学特性又变得更加复杂。论文针对 TBM 斜井建设中亟需解决的富水、大坡度条件 下的洞室围岩力学问题,以国家重点基础研究发展计划 973 课题“深部复合地层 TBM 破岩机理及可掘性评价方法”2014CB046903为依托、以某矿区 TBM 斜井 工程为背景和主要研究对象,采用试验、理论和数值分析相结合的研究方法,对 卸荷效应和地下水渗流影响下的 TBM 斜井围岩的力学特性进行了研究。 主要研究 内容如下 ①通过斜井围岩岩石的基本力学试验,确定 TBM 工程研究段的力学参数,并 基于 Hoek-Brown 准则,引入损伤变量推导岩石卸荷本构模型。同时,在 TBM 斜 井工程围岩力学参数等相关资料基础上,利用数值软件 FLAC3D 和数理统计软件 SPSS,基于卸荷岩体理论,对斜井围岩卸荷参数进行反演分析,找出岩石卸荷率 与围岩弹性模量间的变化规律。 ②利用洞室几何尺寸考虑斜井坡度的影响,推导了基于复变函数理论的斜井 围岩应力和位移的理论解,另外,通过应力边界条件的转化建立了基于极坐标系 下的斜井围岩应力和位移的另一种理论解,从而求得洞室拱顶和拱腰处的变形、 应力和应力集中系数;将两种理论解得到的结果应用于 TBM 斜井工程,与数值分 析得到的应力和位移进行对比,验证了理论解的合理性,并讨论了斜井应力和位 移随斜井坡度及侧压力系数变化的规律。 ③利用有限差分软件 FLAC3D,并通过 FISH 语言编写卸荷、应力释放和后处 理函数,建立了 TBM 斜井数值模型分析洞室开挖卸荷模拟方法和 TBM 斜井施工 动态模拟过程。分别对考虑卸荷和非卸荷条件下的工况进行数值分析,研究对比 两种工况下的位移、应力和塑性区分布。 ④考虑地下水渗流作用,以流固耦合数值计算理论为基础,对富水 TBM 斜井 施工进行三维流固耦合数值模拟研究。对比分析斜井和平洞围岩的力学行为特性, I 重庆大学博士学位论文 II 研究富水条件下坡度的影响,并分别分析渗流控制因素(地下水位、孔隙率和渗 透系数)的变化对 TBM 斜井围岩变形、应力、塑性区分布和渗流场分布的影响。 ⑤基于卸荷效应和流固耦合效应,对富水 TBM 斜井动态施工进行数值分析, 研究了围岩变形、应力、塑性区、卸荷区及渗流场分布随施工进度的演化规律; 研究了 TBM 斜井掘进过程中侧压力系数、斜井坡度、洞室直径、注浆时间和开挖 面的支护应力比对斜井围岩稳定性的影响,分析这些因素下洞室围岩的位移、应 力、塑性分布和卸荷区域分布在 TBM 掘进中的动态和静态规律;在斜井围岩稳定 性影响因素研究基础上,对 TBM 掘进速率、管片支护时机及锚杆支护等变形常规 控制措施进行优化研究。 ⑥以 VB.NET 为平台对 FLAC3D 进行二次开发,结合斜井二维的理论计算, 将三维数值计算和理论计算集成一体, 建立了 TBM 斜井围岩稳定性智能分析交互 系统,并对系统进行简易说明和工程实例应用。 关键词关键词斜井;TBM;卸荷效应;流固耦合;围岩稳定性 英文摘要 ABSTRACT Due to the reduction of shallow mineral reserves, the government pays more attention to deep mining, especially to the research of deep coal resources and mining. Along with the extension of coal mining in depth, we require higher techniques for inclined shaft mining. And compared with traditional construction , TBM boasts its features in safety, progress, quality and yields. It will be the inevitable leading trend for deep coal resources exploitation to introduce the technology of TBM in the construction of long inclined shaft. It will also be a revolution for coal mining technology in our country, being of great significance in social, economic, practical areas to the safety and efficiency of coal mining. TBM is an innovative subject in coal mine construction field for deep inclined shaft with abundant water, which is featured by comprehensive and complex technology. In addition, due to the effect of unloading and groundwater seepage from excavation, it becomes more complex for the mechanical properties of surrounding rock during the TBM construction of inclined well. The Paper pays attention to solving the urgent mechanical problem of surrounding rock of the grotto for TBM deep well construction with rich water and great slope steepness. Based on the subject of national key research project development plan 973 “TBM rock breaking mechanism and uation ology of excavation for deep compound stratum “2014CB046903, it contains TBM inclined shaft project of a mining area as the background and main study object to study the unloading effect and mechanical characteristic of TBM inclined shaft surrounding rock stress under the impact of groundwater seepage. It takes the way by combining the tests, theories and numeric analysis as the research . Its main research contents are as follows ① The paper confirms the mechanics parameters of TBM engineering research through mechanics test of the surrounding rock, and derive the rock unloading constitutive model by introducing damage variable based on Hoek Brown - criterion. At the same time, we take advantage of related ination of Taige Temple TBM project,such as mechanical parameters of surrounding rock. Using the numerical software FLAC3D and mathematical statistics software SPSS, we conduct the inverse analysis of unloading parameters to work out the variation rules between rock unloading rate and elastic modulus of surrounding rock. ② First, this study uses the theory that the geometry size of the cavity will affect III 重庆大学博士学位论文 the gradient of the inclined shaft then infers the theory solution of the inclined shaft surrounding rock stress and displacement based on the complex function theory. Besides, this research have come up with another theory solution of the inclined shaft surrounding rock stress and displacement based on the polar coordinate system by converting the stress boundary conditions. Thus get the coefficient of deation, stress and stress concentration coefficient of the cavity vault and haunch. Finally, this thesis has put the result of these two theory solutions onto the TMB inclined shaft project and compared it with the result of stress and displacement got by numeric analysis. It proves that the theory solutions are reasonable and this study also discusses the principle that the inclined shaft stress and displacement are various according to the gradient of the inclined shaft and the coefficient of lateral stress. ③ Using the finite difference software FLAC3D, we establish a numerical model of TBM construction to analyze unloading simulation of excavation and the TBM construction process of dynamic simulation based on the unloading function and stress release function written by FISH language. And we also conduct a numerical analysis of both unloading and non-unloading conditions to study the displacement, stress and plastic field distribution by comparison the two conditions. ④ Considering the groundwater seepage, the three-dimensional fluid-structure coupling numerical simulation research of inclined shaft TBM construction is pered based on the fluid-structure coupling numerical calculation theory. In addition, we study the influence of gradient in condition of rich water and analyze influence of seepage control factors underground water level, porosity and permeabilityon Contrast analysis of slope peace hole wall rock mechanical behavior characteristics, study the effect of water under the condition of slope, and respectively analyze seepage control factors underground water level, porosity and permeability of the changes on TBM surrounding rock deation, stress, distribution of plastic zone and seepage field by comparative analysis of the mechanical behavior characteristics of inclined shaft and adit surrounding rock. ⑤ The paper conducts the numerical analysis of the TBM dynamic construction of inclined shaft with abundant water considering the unloading effect and fluid-structure coupling effect, studying the evolution rule of surrounding rock deation, mechanical stress, plastic zone, unloading zone as well as seepage field distribution along with the construction progress. We also conduct the research of influence of lateral pressure coefficient, slope gradient, cavity diameter, grouting time, IV 英文摘要 supporting stress ratio of the excavation side on the stability of surrounding rock. Based on the analysis of these factors, we work out the dynamic and static rule of TBM evacuation covering displacement of surrounding rock, mechanical stress and plastic stress distribution and unloading distribution. Along with the research result of influence factors of surrounding rock stability, we carry on optimization study on conventional control measures for TBM excavation rate, segment supporting time and bolting deation. ⑥ Conduct the secondary development of FLAC3D taking VB.NET as the plat. And combine the two-dimensional computation theory of inclined well to integrate the three-dimensional numerical simulation and theoretical calculation, establishing the surrounding rock stability analysis software integration system of TBM excavation. In addition, it gives an simple instruction to the system as well as the engineering case application. Keywords inclined shaft, TBM,effect of unloading, FSI, stability of surrounding rock V 重庆大学博士学位论文 VI 目 录 目 录 中文摘要中文摘要 .......................................................................................................................................... I 英文摘要英文摘要 ....................................................................................................................................... III 1 绪绪 论论 ........................................................................................................................................... 1 1.1 选题背景及意义选题背景及意义 .................................................................................................................. 1 1.2 国内外研究现状国内外研究现状 .................................................................................................................. 3 1.2.1 TBM斜井施工发展情况 .......................................................................................... 3 1.2.2 洞室围岩稳定性研究现状 ...................................................................................... 5 1.2.3 洞室围岩流固耦合研究现状 .................................................................................. 7 1.2.4 卸荷岩体研究现状 .................................................................................................. 9 1.3 研究内容及方法路线研究内容及方法路线 ........................................................................................................ 10 1.3.1 研究内容 ................................................................................................................ 10 1.3.2 研究方法及路线 .................................................................................................... 11 2 TBM斜井的岩石力学试验与卸荷参数反演分析斜井的岩石力学试验与卸荷参数反演分析 ............................................ 13 2.1 引言引言 .................................................................................................................................... 13 2.2 TBM斜井工程特征分析斜井工程特征分析 .................................................................................................... 13 2.2.1 工程概述 ................................................................................................................ 13 2.2.2 斜井设计 ................................................................................................................ 14 2.2.3 工程地质及水文地质特征 .................................................................................... 15 2.2.4 工程特点 ................................................................................................................ 17 2.3 岩石力学特性试验及基于霍克岩石力学特性试验及基于霍克-布朗准则的卸荷损伤本构布朗准则的卸荷损伤本构 ........................................... 17 2.3.1 岩石CERCHAR磨蚀试验 ..................................................................................... 17 2.3.2 岩石强度试验 ........................................................................................................ 19 2.3.3 岩石全岩分析试验 ................................................................................................ 20 2.3.4 基于霍克-布朗准则的岩石卸荷损伤本构 ........................................................... 21 2.4 岩石卸荷参数反演分析岩石卸荷参数反演分析 .................................................................................................... 23 2.4.1 概述 ........................................................................................................................ 23 2.4.2 数值模型及初始参数 ............................................................................................ 24 2.4.3 模拟过程及分析结果 ............................................................................................ 25 2.5 小结小结 .................................................................................................................................... 27 3 一般条件下斜井围岩变形理论解与数值解一般条件下斜井围岩变形理论解与数值解 ....................................................... 29 3.1 引言引言 .................................................................................................................................... 29 VII 重庆大学博士学位论文 3.2 基于复变函数的斜井围岩弹塑性解基于复变函数的斜井围岩弹塑性解 ................................................................................ 29 3.2.1 椭圆双曲坐标及复变函数介绍 ............................................................................ 29 3.2.2 基于复变函数的斜井围岩弹性解 ........................................................................ 31 3.2.3 斜井周边力学分析 ................................................................................................ 36 3.2.4 基于复变函数的斜井围岩塑性解 ........................................................................ 40 3.3 基于极坐标的斜井围岩弹塑性解基于极坐标的斜井围岩弹塑性解 .................................................................................... 44 3.3.1 应力与变形 ............................................................................................................ 45 3.3.2 塑性半径 ................................................................................................................ 47 3.4 实例计算实例计算 ............................................................................................................................ 48 3.4.1 理论解与数值解对比 ............................................................................................ 48 3.4.2 斜井坡度和侧压力系数对斜井影响 .................................................................... 50 3.5 基于卸荷效应的数值计算流程分析基于卸荷效应的数值计算流程分析 ................................................................................ 55 3.5.1 基于位移监测反馈的卸荷计算流程 .................................................................... 55 3.5.2 基于试验结果的卸荷计算流程 ............................................................................ 56 3.5.3 本文卸荷效应计算流程 ........................................................................................ 57 3.6 卸荷与非卸荷效应下卸荷与非卸荷效应下TBM斜井数值分析斜井数值分析 ....................................................................... 58 3.6.1 数值模型 ................................................................................................................ 58 3.6.2 TBM施工数值模拟过程分析 ................................................................................ 60 3.6.3 位移对比分析 ........................................................................................................ 62 3.6.4 应力对比分析 ........................................................................................................ 65 3.7 小结小结 ...............................................................................................................