综采工作面超前液压支架支护系统及适应性研究.pdf
分类号分类号 学校代码学校代码 UDC 密密 级级 博博 士士 学学 位位 论论 文文 综采工作面超前液压支架支护系统综采工作面超前液压支架支护系统 及适应性研究及适应性研究 Research on Advance Supporting System and its Adaptability in Fully-Mechanical Mining Face 研研 究究 生生 牛艳奇牛艳奇 导导 师师 王国法王国法 研究员研究员 学科专业学科专业 采矿工程采矿工程 研究方向研究方向 煤矿支护技术与装备煤矿支护技术与装备 培养单位培养单位煤科总院开采设计研究分院煤科总院开采设计研究分院 煤炭科学研究总院 2015 年 5 月 万方数据 I 摘摘 要要 综采工作面超前巷道受到开拓和采动等多重因素影响, 是顶板管理的难点和重点, 对于深部高应力开采煤矿和现代化大型矿井, 传统的单体支柱支护方式从支护能力和 推进效率均无法满足超前支护的需求。 近年来兴起的超前液压支架提高了支护质量并 适应了自动化高速推进需求,成为超前支护技术装备领域的重大进步。超前液压支架 发展主要集中在架型结构上,实际使用过程存在对顶板二次扰动等负面影响,制约超 前液压支架支护技术的进一步发展。 本文以西部完整性较强的鄂尔多斯煤层和东部兖州矿区深部综放开采煤层两种代 表性矿井为案例,围绕超前液压支架支护系统存在的问题,从超前支护距离确定,超 前支架和顶板相互作用机理,超前支架稳定性,超前支架结构优化和现场试验等方面 对超前支护系统及适应性展开了研究。相关研究工作主要包括以下几个方面 (1)以巷道变形和超前应力两个参数作为稳定控制指标,数值模拟并结合现场观 测确定超前支护距离。以东滩煤矿地质资料为背景,采用 FLAC3D仿真模拟了埋深、 巷道宽度和采空区等因素对超前巷道应力分布影响, 并通过现场实测显示深部沿空留 巷条件下超前应力剧烈影响范围超过 60m, 采用高的支护强度控制形变; 榆神矿区某 矿超前巷道矿压观测和数值模拟共同显示, 超前巷道变形和顶板离层受回采扰动影响 较小,相对剧烈影响区段在 20m 左右。 (2)针对反复支撑对顶板破坏问题,提出了低初撑,高工阻‖的超前支护理念。 分析超前液压支架对顶板的破坏和扰动型式, 锚杆受力观测表明超前段锚杆仍起到主 导作用,超前支架因采用低的初撑力尽可能避开对其损害。利用 AUTODYN 软件研 究顶梁对顶板扰动范围和规律的基础上,提出采用凹凸顶梁来避让锚杆的结构措施。 超前支架需保持高的工作阻力抵抗顶板冲击载荷, 将破坏模式由崩塌式破坏‖减弱为 渐进式破坏‖。 (3)为改善超前支护效果,提出了沿走向非等强支护的方法。通过对不同巷道围 岩应力、位移、剪切破坏程度数值模拟和现场观测发现,超前支护中离工作面远的区 域受采动影响较小,顶板下沉量、巷道变形量均逐渐减小。通过采用设置不同立柱缸 径或数量实现静态非等强,以及调整安全阀或减压阀的方式实现动态非等强,实现与 超前段应力和变形分布适应的动态成组协调控制。 (4)分析超前支架横向稳定性、纵向稳定性和支护稳定性并提出控制措施。针对 支护稳定性, 推导了伸缩筒式直线型稳定机构和四连杆双纽线稳定机构的运动轨迹和 万方数据 II 受力状态公式,结果表明伸缩筒式超前支架随高度增加容易产生结构破坏和失稳,宜 在短顶梁超前支架上应用; 四连杆受控性好, 为大断面超前液压支架的首选稳定机构。 (5)提出了超前液压支架支护系统设计一般原则和支护参数确定方法。为解决四 连杆类超前液压支架轻量化和可靠性要求,建立了多目标优化模型,相同外载荷下以 超前支架连杆受力绝对值之和、质量之和最小为目标。多目标优化模型的求解基于 NSGA-Ⅱ算法求解,并使用模糊集合理论的方法选择最优解,在 MATLAB 环境下编 制成可视化计算程序,应用此程序优化优化了 ZTC16044/27/50 超前液压支架参数, 为提高超前液压支架综合性能提供一种新的有效途径。 (6)基于本文提出的超前支护方法和理念,开发了 ZCZ25600/22/38 超前液压支 架,在东滩煤矿 14310 综放工作面沿空留巷轨道顺槽进行了工业性应用,控制了超前 压力,维护巷道围岩的完整性;ZTC16044/27/50 超前液压支架在神木红柳林煤矿 7m 大采高工作面回风巷超前段进行应用,和工作面成套装备配套使用,最高月产超 120 万 t。 论文提出的超前支护距离的确定方法、低初撑,高工阻‖支护理念、非等强支护 理论,以及超前支架优化设计方法,提高了超前液支护系统的适应性,在西部顶板完 整矿区得到了广泛应用,并在部分高应力矿井得以推广。论文研究成果对于保证矿井 安全、高效生产提供了保障,并为自动化和智能化生产打下了基础。 关键词关键词超前液压支架;支护系统适应性;低初撑、高工阻;支护稳定性;多目标优 化;非等强支护 万方数据 III Abstract Influenced by roadway excavating and coal mining, the advance gate is the most critical part of roof control. Traditional hydraulic prop can’t satisfy the demand of advance supporting anymore in supporting effect or efficiency for deep mining high geostress mine and modern large mine. Advance hydraulic support has improved the supporting quality and met the requirements of automation in recent years, which is the significant progress in supporting equipment field.The development of advance hydraulic support is mainly limited in the frame structure, the disturbance to roadway roof from canoy and other negative effects restricts the further development of advance hydraulic support technology. Taking the stable Ordos coal seam in the Western mining area and deep mining coal seam in Yanzhou mining area for the cases,this paper studied the advance supporting system and its adaptability from the following aspects, such as determination of supporting distance, interaction mechanism between top beam and roadway roof, stability of advance support, structure optimization and industrial test around the problems of advance supporting system. Related research work includes the following aspects. The distance of advance supporting is determined by numerical simulation combined with mine field test. Based on the geological data of Dongtan coal mine, the effluences of coal seam depth, roadway width and gob to the distribution of advance stress were simulated using FLAC3D software. Meanwhile the field test shows that the he severe deation range is more than 60m, which is needed to be strongly supported. The mine pressure observation and numerical simulation show that the deation of roadway and abscission layer in one coal mine of Yulin-Shenmu coal mine areas is slight affected by mining. And the relatively severe range is about 20m. According to the roof failure problems of advance support, the supporting concept of low setting load and high working resistance was put forward. The disturbance of canopy to roadway roof was analyzed. Stress observation of bolter shows that the bolt support system play a leading role in mining, and the advance support should keep a smaller setting load to reduce the damage. Based on the study results of disturbance range and law between canopy and roof, bump canopy was invented to avoid the bolt. With the strong supporting of advance hydraulic support, the failure model of roof is weakened into progressive damage from instant collapse. In order to futher improve the supporting effect, different support strong was proposed and preliminary applied in the above coal mine. By analzing the stress, displacement and shear failure of surrounding rock in different roadways, it is found that the farther away from the working face, the smaller the amount of deation. To meet 万方数据 IV this feature, one is setting different diameters or amounts of legs w in the advace hydraulic supports, the other is regulating the supply pressure by relief vaves. Transverse stability, stability on the strike and supporting stability and the correspond- ing control measures were put forward in the paper. Telescopic linear stability facility and four connecting rod type lemniscate stability mechanism were compared from trajectory and stress state to improve the supporting stability. The results show that advance hydraulic support with telescopic linear stability facility is easy to be instability as the height increasing, so it is suitable for a short canopy. The f four connecting rod type advance hydraulic has a good controlled perance, which is the preferred stability facility for large section roadway. Design principle of advance supporting system and the determination of supporting parameters were proposed. To solve the contradiction between lightweight and reliability, a multi-objective optimization model with the minimum force and quality under the same external load was built. The multi-objective was solved with NSGA-Ⅱ algorithm, and the optimal solution was chosen using fuzzy set theory, the solving progress was programmed in MATLAB. Using the optimization program, ZTC16044/27/50 advance hydraulic support was developed successfully, which provide an effective new way to improve the comprehensive perance of advance hydraulic support. Based on the advance supporting proposed in this paper, ZCZ25600/22/38 advance hydraulic support was developed, the industrial application of which was in the haulage gateway of 14310 fully-mechanized caving face of Dongtan coal mine. Although the haulage gateway is near the gob, the advance hydraulic support has resist the pressure in advance and maintenance the surrounding rock of roadway. ZTC16044/27/50 was used in 7m large height fully-mechanized mining face of Hongliulin coal mine in Shenmu, collaborating with other equipment, the highest monthly output reached 1.2 million tons. The suitability of supporting system was significantly improved through the research results such as determination of advance supporting distance, supporting ideas of low setting load and high working resistance force, non-equal support strength and optimization design of advance hydraulic support. The above theories and s are widely used in the Western coal mine area and some coal mine with high ground stress. The research results of this paper provide new technical and equipment supports for the safe and efficient production of coal, and lay a foundation for the automation and intellectualization of coal mine. keywords advance hydraulic support; adaptability of advance gate supporting system; low setting load and high working resistance;supporting stability; multi-objective optimization; supporting with different setting loads 万方数据 目录 1 绪论 ................................................................................................................................... 1 1.1 选题背景 ................................................................................................................ 1 1.2 选题意义 ................................................................................................................ 3 1.3 国内外研究现状 .................................................................................................... 3 1.3.1 超前顺槽稳定性和压力分布研究 ............................................................. 3 1.3.2 超前支护距离确定方法 ............................................................................. 5 1.3.3 超前支护强度参数确定 .............................................................................. 6 1.3.4 超前液压支架设计研究 ............................................................................. 7 1.4 拟解决的问题 ...................................................................................................... 11 1.5 研究内容与技术路线 .......................................................................................... 12 1.5.1 研究内容 ................................................................................................... 12 1.5.2 技术路线 ................................................................................................... 12 2 超前巷道压力分布和影响规律研究 ............................................................................. 14 2.1 超前巷道应力分布一般规律 .............................................................................. 14 2.2 兖州矿区超前应力影响规律研究 ...................................................................... 15 2.2.1 模拟矿井及仿真模型 ................................................................................ 15 2.2.2 模拟方案和结果分析 ................................................................................ 16 2.2.3 沿空留巷巷道超前应力影响实测 ........................................................... 27 2.3 榆神矿区超前巷道矿压影响 .............................................................................. 29 2.3.1 榆神矿区巷道数值模拟 ............................................................................ 29 2.3.2 榆神矿区巷道矿压观测 ............................................................................ 32 2.4 本章小结 .............................................................................................................. 38 3 超前液压支架对巷道顶板围岩适应性研究 ................................................................. 40 3.1 超前支护对巷道扰动型式 .................................................................................. 40 3.1.1 巷道锚杆(索)支护要求 ....................................................................... 40 3.1.2 回采过程超前巷道段锚杆受力观测 ....................................................... 41 3.1.3 超前液压支架对顶板原支护系统扰动 ................................................... 45 3.2 超前支架和顶板相互作用数值模拟 .................................................................. 46 3.2.1 超前液压支架支护原理 ........................................................................... 46 万方数据 3.2.2 材料数据和模型 ....................................................................................... 47 3.2.3 模型建立 ................................................................................................... 51 3.3 不同初撑力下的扰动范围和强度对比 ............................................................... 52 3.3.1 地应力影响下超前支架对顶板扰动行为 ............................................... 52 3.3.2 超前支架单因素对岩体扰动分析 ........................................................... 54 3.4 冲击载荷下超前支架支护适应性研究 .............................................................. 57 3.4.1 冲击载荷和方位 ....................................................................................... 57 3.4.2 正上方冲击 ................................................................................................ 57 3.4.3 侧上方冲击 ................................................................................................ 59 3.5 超前支护非等强控制 ........................................................................................... 61 3.5.1 现有超前支护压力控制问题 .................................................................... 61 3.5.2 非等强支护控制方法 ................................................................................ 61 3.6 本章小结 ............................................................................................................... 63 4 超前液压支护系统稳定性研究 ...................................................................................... 65 4.1 超前液压支架稳定性分析 ................................................................................... 65 4.2 伸缩筒式液压支架分析 ....................................................................................... 66 4.2.1 伸缩筒偏移量分析 .................................................................................... 66 4.2.2 纵向平面受力分析 .................................................................................... 68 4.2.3 横向受力分析 ............................................................................................ 72 4.2.4 伸缩杆结构有限元分析 ........................................................................... 73 4.3 四连杆式超前支架稳定性分析 ........................................................................... 74 4.3.1 四连杆式超前支架运动和受力分析 ....................................................... 74 4.3.2 四连杆支架稳定性分析 ........................................................................... 78 4.4 结论 ...................................................................................................................... 79 5 超前液压支架支护系统优化设计 ................................................................................. 80 5.1 超前支护系统设计原则 ...................................................................................... 80 5.1.1 效能评价原则 ............................................................................................ 80 5.1.2 理论分析计算原则 ................................................................................... 81 5.1.3 经验对比原则 ........................................................................................... 81 5.1.4 设备尺寸模拟配套原则 ........................................................................... 82 万方数据 5.1.5 样架优化设计布置原则 ........................................................................... 82 5.1.6 坚持互换性原则 ....................................................................................... 82 5.2 超前液压支架支护参数确定 .............................................................................. 83 5.2.1 几何参数 .................................................................................................... 83 5.2.2 工作参数 .................................................................................................... 84 5.3 四连杆类超前液压支架结构参数多目标优化设计 .......................................... 84 5.3.1 超前支架结构参数优化设计目标函数 ................................................... 84 5.3.2 超前支架结构参数优化设计约束条件 .................................................... 85 5.3.3 优化算法 ............................................................................