掘进支护支架的超宽带粒子群优化定位方法.pdf
工程硕士专业学位论文 掘进支护支架的超宽带粒子群优化 定位方法 Ultra-wideband Positioning Based on Particle Swarm Optimization for Tunneling Support Bracket 作 者高光辉 导 师张 勇 教授 中国矿业大学 二○一九年六月 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 保密的学位论文在解密后适用本授权书。 作者签名 导师签名 年 月 日 年 月 日 万方数据 中图分类号 TD353 学校代码 10290 UDC 621.3 密 级 公开 中国矿业大学 工程硕士专业学位论文 掘进支护支架的超宽带粒子群优化定位方法 Ultra-wideband Positioning Based on Particle Swarm Optimization for Tunneling Support Bracket 作 者 高光辉 导 师 张勇 申请学位 工程硕士专业学位 培养单位 信息与控制工程学院 学科专业 控制工程 研究方向 掘进装备定位 答辩委员会主席 李明 评 阅 人 二〇一九年六月 万方数据 致谢致谢 时间如白驹过隙,在这春暖花开、万物复苏季节,迎来了我的研究生末期生 活,回顾三年的研究生学习生涯,可以用“感慨万千”来形容。这三年,我学到 的不仅仅是专业知识,更是老师和同学的科研态度、生活态度和为人处世方式。 首先,感谢我的导师张勇教授,张老师严谨的科研态度、渊博的知识、谦虚 的品格和宽厚善良的为人处世方式,永远值得我学习,对我以后的生活、工作有 着莫大的帮助。 张老师在科研方面给予了我许多教诲与指导,在生活方面给予我 慈父般的关怀。您是一位不可多得的好老师,在此,我真诚地对张老师表达最深 的感谢。 特别感谢课题组的郭一楠教授,每周一次的课题组讨论会上, 郭老师对我科 研中遇到的问题,给予耐心地解答和悉心的指导,给我指明了方向,避免了诸多 弯路。 郭老师严谨的科研态度和细致的处世方式深深地影响了我,将使我终身受 益,在此,我真诚地对她表达最深的感谢。 感谢课题组巩敦卫教授、孙晓燕教授、姚香娟教授、张扬老师和耿娜老师在 科研中给予的鼓励与指导,在此,致以最真挚的感谢。 感谢课题组的徐标、荣淼、孙百才、吉建娇、封文清、宋贤芳、张振和已经 毕业王庆、程伟、何勇、季俊华、张培等师兄师姐在学习和生活中给予我的指导 和帮助,在此,对他们表示感谢。感谢课题组的同一届的同学和其他师弟师妹, 在生活上带给我欢乐。 感谢我的家人,在我求学期间给予我始终如一的鼓励、关怀和支持,使我可 以潜心学习。 感谢国家重点基础研究发展计划基金委为课题的研究提供资金支持。 感谢中国矿业大学,感谢信控学院的所有老师对我的谆谆教诲 感谢各位老师和专家在百忙之中评阅论文 万方数据 I 摘摘 要要 煤炭作为我国的主要能源,对我国经济发展具有重要作用。在深部危险煤层 的少人化掘进作业中,掘进支护支架作为综掘装备的核心组成部分,一方面对掘 进后的空顶进行有效支撑,另一方面携带锚钻机,完成对空顶的有效锚固。其在 巷道中的绝对位置,直接决定了后续锚固操作中锚杆位置的标定,以及掘进空顶 的安全性。由此可知,掘进支护支架的定位至关重要。在现有的掘进支护支架定 位方法中, 惯性导航技术是主要方法,但是这种定位方法存在误差积累且需要对 惯导元件定时校正的不足,过程复杂且定向精度不高。 考虑到掘进支护支架的工作环境是封闭狭长的煤矿巷道,存在粉尘等噪声, 且开放地面环境适用的 GPS 等定位技术不能有效检测,本文引用具有高时间分 辨率和强抗干扰能力的超宽带技术(Ultra wide-band,UWB),实现掘进支护支 架的三维定位。 首先,传统的超宽带 TOA 定位模型中,定位方程组是一非线性方程组,求 解困难,且求解精度较低。尽管可以采用 Taylor 级数展开等方法进行定位解算, 但是,该方法的收敛性及定位精度常依赖于精确初始定位值。基于此,本文把非 线性方程组的求解问题转化为一个进化优化问题, 构建了非线性方程组的适应度 函数,并利用粒子群优化算法(Particle swarm optimization,PSO)确定较优的 定位方程组初始值;进而,采用 Taylor 级数展开,获得最优的掘进支护支架位置 信息。结果表明,基于 PSO-Taylor 的定位解算方法具有较高的定位精度。 其次,为提高超宽带 TDOA 定位模型的解算精度,将其非线性方程组求解 问题转化为一个进化优化问题。根据 Chan 算法的解算过程,构建非线性方程组 的适应度函数;采用一种新的探索型粒子群优化算法(Exploratory particle swarm optimization,EPSO),求解 TDOA 定位方程组,进而完成定位。结果表明,基 于 EPSO 的定位解算算法具有较高的定位精度。 最后,系统分析定位系统的误差来源,为进一步提高定位精度,提出通过改 变基站布局和基站个数来提高系统定位精度的改进技术。 构建多目标超宽带基站 布局模型,提出一种探索型多目标粒子群优化算法(Exploratory multi-objective PSO,EMOPSO),对基站布局模型进行求解,得出最优布局方案;进而,分别 在最优布局和典型布局上,基于已给出的 PSO-Taylor 算法和 EPSO 算法,对相 应的定位方程组进行定位解算。结果表明,优化后的布局方案可以帮助 PSO-Taylor 算法和 EPSO 算法得到更高精度的定位结果。 该论文有图 43 幅,表 10 个,参考文献 100 篇。 万方数据 II 关键词关键词综掘工作面;掘进支护支架;定位;超宽带;粒子群优化 万方数据 III Abstract As the main energy source of China, coal plays an important role in China economic development. In the small-scale tunneling operation of deep dangerous coal seams, the tunneling support bracket is a core component of the comprehensive tunneling equipment. On the one hand, it supports effectively the empty roof after tunneling, and on the other hand carries the anchor drilling rig to complete the anchor on the empty roof effectively. Therefore, its absolute position in the roadway determines directly the calibration of the bolt position in the subsequent anchoring operation and the safety of the tunneling roof. It can be seen that the positioning of the tunneling support bracket is crucial. Among existing positioning technologies of the tunneling support bracket, using inertial navigation technology is one of main positioning s, but this has error accumulation and requires correcting the inertial navigation element timely. This process is complicated and the orientation accuracy is not high. Considering that the working environment of the tunneling support bracket is closed and narrow coal mine roadway, and there is noise such as dust, positioning technologies such as GPS which is applicable to the open ground environment cannot be effectively detected. Based on this, the ultra-wideband technology UWB with high time resolution and strong anti-interference ability is introduced, and the three-dimensional positioning of the tunneling support bracket is accomplished. Firstly, in the traditional UWB TOA positioning model, the positioning equation is a nonlinear equation, which is difficult to be solved and has low accuracy. The Taylor series expansion is able to used to find positioning solutions. However, the convergence and positioning accuracy of this depend on exact initial positioning values. Based on this, this paper transs the problem of solving nonlinear equations into an evolutionary optimization problem, constructs the fitness function of nonlinear equations, and uses particle swarm optimization PSO to determine a well initial value of optimal positioning equations. Furthermore, using Taylor series expansion, a optimal position ination of the tunneling support bracket is obtained. The results show that the PSO-Taylor-based has higher positioning accuracy. Secondly, in order to improve the accuracy of the UWB TDOA positioning model, the problem of solving the nonlinear equations is transed into an 万方数据 IV evolutionary optimization problem. According to the solving process of Chan algorithm, the fitness function of nonlinear equations is constructed. After that, the exploratory particle swarm optimization EPSO is used to solve the TDOA positioning equations. The results show that the EPSO-based has higher positioning accuracy. Finally, the error source of positioning system is systematically analyzed. To further improve the positioning accuracy, a that changs the layout of the base station and the number of base stations is studied. The multi-objective UWB base station layout model is constructed, and an exploratory multi-objective particle swarm optimization EMOPSO algorithm is proposed to solve the base station layout model to obtain optimal layout scheme. Furthermore, the corresponding positioning equations are solved by the given PSO-Taylor algorithm and EPSO algorithm on the optimal layout and typical layout. The results show that the optimized layout scheme can help PSO-Taylor algorithm and EPSO algorithm get higher precision positioning results. The thesis includes 43 figures, 10 tables and 100 references. Keywords comprehensive tunneling face; tunneling support bracket; positioning; ultra-wideband; particle swarm optimization 万方数据 V 目目 录录 摘摘 要要 ............................................................................................................................. I 目目 录录 ............................................................................................................................ V 图清单图清单 ........................................................................................................................ IX 表清单表清单 ..................................................................................................................... XIII 变量注释表变量注释表 ............................................................................................................. XIV 1 绪论绪论 ........................................................................................................................... 1 1.1 研究背景................................................................................................................. 1 1.2 掘进装备定位相关研究现状................................................................................. 1 1.3 研究内容................................................................................................................. 3 1.4 研究成果及意义..................................................................................................... 4 1.5 论文结构................................................................................................................. 5 2 相关工作相关工作 ................................................................................................................... 7 2.1 掘进支护支架工况条件......................................................................................... 7 2.2 掘进支护支架定位原理......................................................................................... 7 2.3 超宽带信号特点及定位模型.................................................................................. 8 2.4 掘进支护支架定位模型....................................................................................... 12 2.5 粒子群优化算法................................................................................................... 12 2.6 本章小结............................................................................................................... 17 3 基于基于 TOA 定位模型的粒子群定位算法定位模型的粒子群定位算法 ............................................................... 18 3.1 研究动机............................................................................................................... 18 3.2 基本超宽带 TOA 定位算法 ................................................................................ 19 3.3 基于 TOA 定位模型的算法精度仿真分析 ........................................................ 24 3.4 本章小结............................................................................................................... 34 4 基于基于 TDOA 定位模型的粒子群定位算法定位模型的粒子群定位算法 ............................................................ 35 4.1 研究动机............................................................................................................... 35 4.2 基本超宽带 TDOA 定位算法 ............................................................................. 35 4.3 基于 TDOA 定位模型的算法精度仿真分析 ..................................................... 40 4.4 本章小结............................................................................................................... 49 万方数据 VI 5 基于多目标优化的超宽带基站布局研究基于多目标优化的超宽带基站布局研究 ............................................................. 50 5.1 研究动机............................................................................................................... 50 5.2 超宽带基站布局模型........................................................................................... 51 5.3 多目标基站布局模型的构建............................................................................... 56 5.4 改进的多目标粒子群优化算法........................................................................... 57 5.5 超宽带基站多目标优化布局............................................................................... 59 5.6 基站几何布局对定位精度影响仿真分析........................................................... 63 5.7 本章小结............................................................................................................... 69 6 结论结论 ......................................................................................................................... 71 6.1 本文工作............................................................................................................... 71 6.2 后续工作............................................................................................................... 72 参考文献参考文献 ..................................................................................................................... 73 作者简历作者简历 ..................................................................................................................... 79 学位论文原创性声明学位论文原创性声明 ................................................................................................. 80 学位论文数据集学位论文数据集 ......................................................................................................... 81 万方数据 VII Contents Abstract ...................................................................................................................... III Contents .................................................................................................................... VII List of Figures .......................................................................................................... IX List of Tables ........................................................................................................... XIII List of Variables...................................................................................................... XIV 1 Introduction ............................................................................................................... 1 1.1 Research Background .............................................................................................. 1 1.2 Related State-of-art of Tunneling Equipment Positioning ....................................... 1 1.3 Research Contents .................................................................................................... 3 1.4 Research Achievements and Significance ............................................................... 4 1.5 Structure ................................................................................................................... 5 2 Related Works ........................................................................................................... 7 2.1 Working Conditions of Tunneling Support Bracket ................................................ 7 2.2 Positioning Principle of Tunneling Support Bracket ............................................... 7 2.3 Characteristics and Positioning Model of Ultra-wideband Signal ........................... 8 2.4 Positioning Model of Tunneling Support Bracket ................................................. 12 2.5 Particle Swarm Optimization ................................................................................. 12 2.6 Conclusion of This Chapter ................................................................................... 17 3 Particle Swarm Location Algorithm Based on TOA Positioning Model............ 18 3.1 Research Motivation .............................................................................................. 18 3.2 Basic Ultra-wideband TOA Positioning Algorithm ............................................... 19 3.3 Simulation Analysis of Algorithm Accuracy Based on TOA Positioning Model .. 24 3.4 Conclusion of This Chapter ................................................................................... 34 4 Particle Swarm Location Algorithm Based on TDOA Location Model ............. 35 4.1 Research Motivation .............................................................................................. 35 4.2 Basic Ultra-wideband TDOA Location Algorithm ................................................ 35 4.3 Simulation Analysis of Algorithm Accuracy Based on TDOA Location Model ... 40 4.4 Conclusion of This Chapter ...........................................