基于中厚板理论的坚硬厚顶板破断致灾机制与控制研究.pdf
博士学位论文 基于中厚板理论的坚硬厚顶板破断致灾 机制与控制研究 Study on the Disaster-Causing Mechanism and Control Criteria of the Hard and Thick Roof Strata Based on Medium Thick Plate Theory 作 者杨胜利 导 师茅献彪 教授 中国矿业大学 二〇一九年五月 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 万方数据 中图分类号 TD32 学校代码 10290 UDC 密 级 公开 国家重点研发计划课题(2017YFC0603002) 国家自然科学基金面上项目(51574244) 中国矿业大学 博士学位论文 基于中厚板理论的坚硬厚顶板破断致灾 机制与控制研究 Study on the Disaster-Causing Mechanism and Control Criteria of the Hard and Thick Roof Strata Based on Medium Thick Plate Theory 作 者 杨 胜 利 导 师 茅献彪 教授 申请学位 工学博士学位 培养单位 深部重点实验室 学科专业 工程力学 研究方向 采动岩体力学与工程 答辩委员会主席 朱珍德 评 阅 人 二〇一九年五月 万方数据 致谢致谢 石火光阴,日月如梭,很快就将结束我的博士研究生生活,喜悦与激动、怅 然与不舍之思绪,油然而生。三年里,我得到了很多人的帮助、关心和爱护,在 这里我致以衷心的感谢。 首先,我要感谢我的导师缪协兴教授和茅献彪教授,我能够师从两位教授是 我的幸运,也是我从北京到徐州求学最大的收获。从选课、选题,再到博士论文 的撰写、送审,你们都付出了很多的心血。你们严谨的治学态度、求实的科研精 神,时时刻刻都在影响着我。谆谆教诲之下,耳濡目染之中,我的思辨能力不断 提高,这将使我受益终生。在此,谨向两位导师及家人致以最诚挚的感谢和最崇 高的敬意。 其次,要感谢我的硕士生导师王家臣教授,从硕士阶段的学习到留校任教, 您一如既往的关心和爱护,使我能够在自己专业领域不断进步。您教会了我严谨 求实的科研思维和治学态度,引领我迈入科学的殿堂。您渊博的知识、敏锐的洞 察力、严谨的治学态度,时刻鞭策着我不断努力。也感谢师母李娟医生,慈母般 的关爱,让我如沐春风,倍感温暖。 再次,还要感谢在我博士期间给予我帮助的张吉雄教授、浦海教授、巨峰教 授、李明副教授、陈梁博士、郝阳博士、张奇博士等,也要感谢矿大北京潘卫东 师兄、 李杨师兄, 王兆会师弟、 张锦旺师弟, 李良晖博士等课题组的老师和同学, 谢谢你们的支持青春不老,我们不散 最后,也要感谢我的父母和爱人,亲人和朋友,为了我的学业和工作,你们 默默的奉献和无私的支持,你们是我一生积极进取不敢懈怠的最大动力。感谢所 有关心和帮助过我的人,衷心祝愿你们幸福安康 感谢我博士论文中涉及到的每一位学者, 谢谢你们的研究成果给予我指导和 帮助,在此向每一位学者表示真诚感谢 万方数据 I 摘摘 要要 我国赋存有大量坚硬厚顶板煤层,该类煤层在进行长壁开采时,很容易形成 强烈的矿压显现,比如工作面发生大面积切顶来压、支架压死、煤壁片帮与冒顶 等事故,严重影响工作面的安全回采。长壁工作面顶板初次来压步距一般不大于 40 m,即使基本顶较薄,也不满足“薄板”条件(厚跨比<0.1250.2) ,尤其在 坚硬厚顶板工作面, 按照“薄板”理论分析顶板的受力与破断是不恰当的; 另外, 在工作面倾斜方向上,来压步距、来压强度和来压持续时间一般也会不同,在超 长工作面这种差别更显著。因此,为了揭示坚硬顶板破断以后的空间形态,论文 基于中厚板理论研究坚硬厚顶板的破断致灾机制,并提出控制方法。 论文以坚硬顶板大采高综放工作面、复合顶板大采高工作面为工程背景,采 用理论分析、数值计算、模拟实验平台开发与实验等手段,系统研究坚硬厚顶板 变形与破坏理论解析、厚顶板破断空间形态与覆岩运动规律、以及坚硬厚顶板破 断致灾机制与动载发生机理,在以下几方面进行了创新性研究 (1)推导了适用于煤矿坚硬厚顶板的中厚板理论模型,并给出了首采面和 孤岛面的变形与应力分布的理论解;构建了采场覆岩破断与运移的力学模型,给 出了断裂位置和断裂角的求解公式,对覆岩运动空间形态进行了解析; (2)揭示了坚硬厚顶板破断失稳致灾机理,提出了坚硬厚顶板切落式破坏 动载荷计算方法,并分析了支架-围岩系统中刚度耦合效应,创新了液压支架“动 载荷法-刚度耦合”综合选型方法,提出了大变形煤体柔性加固新方法,优化了柔 性加固参数; (3)研制了能够模拟坚硬厚顶板破断特征的三维模拟实验平台,模拟出了 坚硬厚顶板裂隙演化与破断过程;开发了顶板破断冲击模拟实验平台,开展了厚 顶板条件下直接顶与支架刚度的测试,揭示了动载冲击系数变化规律。 建立的基于中厚板理论中的应力及挠度方程,可以确定坚硬顶板破断位置、 断裂形式;研制的模拟坚硬厚顶板破断特征的三维相似模拟实验平台,模拟出了 不同坚硬顶板破断特征、破断后形成的空间形态;开发的支架与围岩关系刚度测 试系统,开展了不同顶板条件冲击试验,修正了厚顶板破断动载系数;确定的支 架选型“动载荷法-刚度耦合”双因素确定方法,指导了液压支架选型;开发的 煤岩灾变区域柔性加固技术,实现了坚硬厚顶板采场围岩灾变区域有效控制。论 文研究成果通过工业性实验工作面进行了验证, 可以为类似条件煤层开采提供理 论依据,具有重要的理论意义与工程价值。 该论文有图 103 幅,表 13 个,参考文献 193 篇。 关键词关键词坚硬厚顶板;中厚板理论;动载冲击;煤岩灾变;柔性加固 万方数据 II Abstract There are a large number of coal seams with hard thick roof in China. When long-wall mining is carried out in this kind of coal mine, strong ground pressure behavior is easy to occur, such as the accidents of large-scale roof-cutting weighting, hydraulic support crushing, rib spalling and roof falls, which seriously affect the safety of mining. The first weighting interval of roof in long-wall working face is generally not more than 40m. It cannot meet the condition of thin plate whose thickness-span ratio ranges from 0.125 to 0.2 even if the main roof is thinner. However, it is not appropriate to analyze the stress and breakage of roof according to the thin plate theory especially in hard thick roof working face. In addition, the weighting internal, the weighting strength and the weighting duration are generally different in the inclined direction of working face, especially in the super-long working face. Therefore, In order to reveal the of space breaking after the hard roof is broken, based on the theory of medium thick plate, this paper studies the damage mechanism of hard thick roof and puts forward the control s. There are three fully mechanized longwall working faces with hard and thick roof are taken as the engineering background of this paper, including top-coal caving face with large mining height and large height work face with composite roof. The theoretical analysis, numerical and physical simulation are used in this study. The theoretical analysis of deation and failure of the hard and thick roof, the spatial of the broken thick roof and the movement behavior of overlying strata, and the mechanism of roof failure and dynamic load occurrence are studied systematically in this thesis. The innovative achievements have been made in the following aspects 1 The theoretical model of the medium-thick plate is deduced which is appropriate for the hard and thick roof of a coal mine. The theoretical solution of the deation and stress distribution of the first mining face and the island face is given. The mechanical model of overburden breakage and movement is established, the ulas of failure location and angle are given, and the spatial of overburden movement is analyzed. 2 The damage mechanism of the hard and thick roof is revealed. A to calculate the dynamic load of roof shear failure is proposed. The stiffness coupling effect in support-surrounding rock system is analyzed. The comprehensive supports selection of “dynamic load -stiffness coupling“ is innovated. A new of flexible large deation reinforcement of coal body is proposed, and the 万方数据 III parameters of the flexible reinforcement are optimized. 3 A 3D physical simulation plat is developed to simulate the fracture evolution of the hard and thick roof. The stiffness testing system and experimental are developed to test the stiffness of the support and immediate roof under the condition of thick roof. The dynamic impact coefficient is also corrected. Based on the stress and strain and deflection equations in the theory of medium and thick roof, the failure location, fracture shape of the roof can be determined. The 3D physical simulation plat successfully simulates the failure behavior and spatial structure of hard roof under different conditions of overburden thickness. The movement characteristics of the roof in the inclined working face with large angle are validated by the field measurement and the surface subsidence law obtained by probability integral . The developed stiffness testing system is used for impact tests under different roof conditions to correct the dynamic load coefficient of thick plate breakage. The determined “dynamic load -stiffness coupling“ comprehensive supports selection guides the selection of hydraulic support. The flexible large deation reinforcement technology has realized the effective disaster control of surrounding rock in the stope. The research results of this thesis are verified by the engineering application, which provide a theoretical basis for coal mining under similar conditions, and has both theoretical and practical significance. There are 103 figures, 13 tables and 193 references in this thesis. Keyword hard and thick roof; medium and thick plate theory; dynamic load impact; coal and rock disaster; flexible reinforcement. 万方数据 IV 目目 录录 目目 录录......................................................................................................................... IV 图清单图清单...................................................................................................................... VIII 表清单表清单.......................................................................................................................XIV 变量注释表变量注释表 ............................................................................................................... XV 1 绪论绪论............................................................................................................................ 1 1.1 论文选题背景及意义 ............................................................................................. 1 1.2 国内外研究现状 ..................................................................................................... 2 1.3 研究内容与科学问题 ........................................................................................... 10 1.4 论文的创新点 ....................................................................................................... 12 2 典型工作面采动应力与矿压显现规律典型工作面采动应力与矿压显现规律 ................................................................. 13 2.1 坚硬厚顶板特厚煤层综放工作面矿压显现特征 ............................................... 13 2.2 复合顶板工作面围岩变形及受力特征 ................................................................ 14 2.3 典型工作面来压特征 ............................................................................................ 23 2.4 本章小结 ............................................................................................................... 27 3 基于中厚板理论的坚硬厚顶板变形及破断特征基于中厚板理论的坚硬厚顶板变形及破断特征 ................................................. 28 3.1 基本假设与边界条件 ........................................................................................... 28 3.2 坚硬厚顶板的中厚板力学模型及控制方程 ....................................................... 29 3.3 首采面矩形中厚板理论解析 ............................................................................... 33 3.4 孤岛工作面矩形中厚板理论解析 ....................................................................... 38 3.5 案例分析 ............................................................................................................... 50 3.6 采场顶板破断模式和判据 ................................................................................... 58 3.7 本章小结 ............................................................................................................... 62 4 厚顶板破断空间形态与覆岩运动规律厚顶板破断空间形态与覆岩运动规律 ................................................................. 63 4.1 厚顶板破断空间形态的相似模拟 ....................................................................... 63 4.2 顶板破断空间形态数值分析 ............................................................................... 71 4.3 采场覆岩破断与运移规律 ................................................................................... 77 4.4 本章小结 ............................................................................................................... 86 5 坚硬厚顶板工作面坚硬厚顶板工作面支架与围岩关系支架与围岩关系 ...................................................................... 87 5.1 坚硬顶板破断支架与围岩关系 ........................................................................... 87 5.2 顶板破断动载发生机理 ....................................................................................... 90 5.3 顶板切落破断实验与支架动载系数修正 ........................................................... 94 万方数据 V 5.4 支架刚度耦合效应 ............................................................................................. 103 5.5 本章小结 ............................................................................................................. 108 6 煤岩灾变区域柔性加固技术煤岩灾变区域柔性加固技术 ............................................................................... 109 6.1 大变形煤壁柔性加固技术 ................................................................................. 109 6.2 棕绳-浆液-煤体协调变形机制 .......................................................................... 110 6.3 柔性加固技术工程应用 ..................................................................................... 114 6.4 本章小结 ............................................................................................................. 120 7 结论与展望结论与展望 ........................................................................................................... 122 7.1 结论 ..................................................................................................................... 122 7.2 展望 ..................................................................................................................... 123 参考文献参考文献 ................................................................................................................... 124 作者简历作者简历 ................................................................................................................... 137 万方数据 VI Contents Abstract ........................................................................................................................ II Contents ..................................................................................................................... VI 1 Introduction ............................................................................................................... 1 1.1 Background and significance of thesis .................................................................... 1 1.2 Research status ......................................................................................................... 2 1.3 Research contents and scientific issues .................................................................. 10 1.4 Innovation points ................................................................................................... 12 2 Mining induced stress and strata behavior in typical longwall working face ... 13 2.1 Strata behavior of top coal caving working face under hard and thick roof .......... 13 2.2 Surrounding rock deation and stress characteristics of working face with the compound roof ...................................................................................................... 14 2.3 Roof weighting characteristics of typical longwall working face ......................... 23 2.4 Chapter Summary .................................................................................................. 27 3 Deation and break characteristics of hard and thick roof based on medium-thick plate theory ........................................................................................ 28 3.1 Basic hypothesis and boundary conditions ............................................................ 28 3.2 Basic medium-thick plates model and equations of hard and thick roof ............... 29 3.3 Theoretical analysis of rectangular medium-thick plate for the first mining face . 33 3.4 Theoretical analysis of rectangular medium-thick plate in the isolated working face ........................................................................................................................ 38 3.5 A case analysis ....................................................................................................... 50 3.6 Rupture mode and criteria of the main roof ........................................................... 58 3.7 Chapter Summary .................................................................................................. 62 4 Spatial of thick roof breaking and movement behavior of overburden strata ...............................................................................................