基于Mesh网络的顶板离层监测系统开发.pdf
万方数据 万方数据 摘要 I 基于 Mesh 网络的顶板离层监测系统开发 摘 要 本课题是山西省科技厅重大专项项目(编号20131101029)“基于物 联网的煤矿重大生产装备状态监测及全寿命周期管理系统的开发”中的重 要组成部分。随着我国煤炭工业的快速发展,对煤矿井下安全生产提出了 更高要求,而顶板事故在矿井事故总数中的比重长期居高不下,严重威胁 了煤矿井下的生产安全以及井下工作人员的生命安全。实时监测顶板状态 对于保障顶板安全具有重要作用。而目前顶板离层监测主要以人工为主, 即工人用观测仪定时到现场读数,这样不仅工作量大,而且实时性差、误 差大;在有线监测系统中,一旦线路老损或被腐蚀,将导致传感器与数据 监测设备通信中断;虽然目前市场上也有其它无线监测系统,但存在着功 耗高、通讯距离不能满足要求等问题。因此,开发一套新型低功耗的无线 自组网顶板离层监测系统,实现对顶板离层位移数据的实时采集、自动存 储和长距离无线传输,以便对其进行在线监测和分析诊断,具有重要的现 实意义。 论文针对现有无线监测系统功耗高,系统无法满足工作面用电需求, 以及传输距离短导致的数据无法可靠上传等缺陷,自主设计研发了一套顶 板离层监测系统。系统通过采用低功耗设计方式和定时唤醒工作模式,实 现了超低功耗运行;设计了基于内嵌 WaveMesh 协议的无线模块的通信网 络,实现了在井下巷道拐弯倾斜等环境中的无线数据的长距离可靠传输, 提高了系统的稳定性。本文的主要研究工作和成果如下 在大量查阅学习国内外相关研究与产品现状的基础上,通过在晋煤集 团欣科公司开展现场调研和对系统进行需求分析,设计了顶板离层监测系 统的总体方案,确定了系统中离层仪和监测主机的功能;选择了无线 WaveMesh 技术作为本系统的无线通信技术。 根据系统功能需求以及总体设计方案,确定了适合本系统的微处理器, 开发了以此为核心的相关外围电路,使得离层仪能够完成数据采集、信号 万方数据 太原理工大学硕士研究生学位论文 II 传输、显示和存储功能,监测主机可以实现对各个离层仪数据的接收、存 储以及可视化显示。 结合硬件电路,采用模块化结构的程序设计方法,编写了离层仪和监 测主机的相关主程序、数据采集子程序、中断服务程序和通讯程序等。 在实验室对系统各功能进行了调试,试验结果表明整个系统功能完 善稳定,运行可靠且功耗低,数据采集显示实时准确,能满足在井下长时 间工作以及远距离传输的要求,对提高井下安全生产有重要意义。 关键词顶板,离层监测,低功耗,WaveMesh,无线传输 万方数据 ABSTRACT III Development of Mining Roadway Roof Abscission Layer Monitoring System Based on Mesh Network Transmission ABSTRACT This thesis is one of the main parts project“Development of the Condition Monitoring and Life Cycle Management for Mine Major Production Equipments Based on Internet of Things”No 20131101029 sponsored by the Shanxi Science and Technology major projects. With the rapid development of coal industry in our country, higher requirements for coal mine safety production are proposed. And the proportion of the total number of roof accidents in mines is high for a long time, it seriously threatens the production safety of coal mine and underground staffs’ life safety. Concequently, roof layer monitor is of crucial importance to the coal mine safety, workers use a viewer to read data regularly on site which is not only cost heavy but lost real-time perance. In the cable monitoring system, the aging or corrosive line will cause communication interruption between the sensor and the data monitoring equipment. Although there are wireless monitoring systems on the market at present, but the high power, communication distance can not meet the requirements. Therefore, it is significant to develop a low-power roadway abscission online monitoring system based on Mesh network system to realize real time acquisition, automatic storage and long distance wireless transmission of the roof abscission layer of coal mine gallery. A set of roof abscission layer monitoring system is designed and developed in this paper independently , in view of the defects in the existing wireless monitoring system in which power consumption of makes the system can not meet the demand of the working surface and short transmission distance causes the data cannot be reliably uploaded. By using low power design mode and 万方数据 太原理工大学硕士研究生学位论文 IV timing wake-up mode, the super low power consumption is realized in this system. The long-range wireless module based on embedded WaveMesh protocol is selected to not only realize the long distance reliable transmission of wireless data in the corner of the underground tunnel, but improve stability of the system and provide scientific basis for prevention of roof falling accident. The main research work and results of this paper are as follows After investigating at the scene and analyzing the system requirement in detail, the overall design scheme of roof separation monitoring system as put forward based on large number of consulting and learning the present status of research and products at domestic and abroad. The function and principle of separation device and substation is introduced in this paper, and wireless WaveMesh technology is selected as the wireless communication technology of the system. According to the system functional requirements and the overall design, a suitable microprocessor for the system is selected and the related peripheral circuits are developed.The separation device can realize data acquisition, signal transmission, display and storage function, and the substation can realize data receiving, storage and visual display of abscission layer instrument. Combined with the hardware circuit, the software programs are designed by using the modular programming , including the main program of separation devices and substations, the data acquisition subroutine, interrupt service program and communication subprogram, etc. All functions of the system are debugged in the laboratory. Experimental results show that the system has fully functional stability, real time and accurate data acquisition display, reliable operation and low power consumption. It can meet the requirements of long time work and long distance transmission in underground mine which is of great significance to improve the safety production in underground mine. KEYWORDS roof, abscission layer monitoring, low power consumption, WaveMesh, Wireless transmission 万方数据 目录 V 目录 摘 要........................................................................................................................................... I ABSTRACT..............................................................................................................................III 第一章 绪论...............................................................................................................................1 1.1 课题背景和研究意义.....................................................................................................1 1.2 国内外顶板监测系统的研究现状.................................................................................3 1.2.1 机械式顶板离层仪..............................................................................................4 1.2.2 智能式顶板监测系统..........................................................................................5 1.3 顶板监测系统的未来发展方向.....................................................................................6 1.4 本文的研究目标及主要研究内容.................................................................................6 第二章 顶板离层监测系统总体方案分析与设计...................................................................7 2.1 顶板离层监测系统需求分析.........................................................................................7 2.2 系统总体方案.................................................................................................................7 2.2.1 系统总体结构......................................................................................................8 2.2.2 离层仪功能及原理..............................................................................................8 2.2.3 监测主机功能及原理..........................................................................................9 2.3 系统的关键技术...........................................................................................................10 2.3.1 无线传感网络的特点........................................................................................11 2.3.2 无线通信技术的比较........................................................................................11 2.3.3 无线 WaveMesh 网络....................................................................................... 14 2.4 本章小结.......................................................................................................................17 第三章 监测系统硬件电路设计.............................................................................................19 3.1 系统硬件设计原则.......................................................................................................19 3.2 微处理器芯片的选择...................................................................................................19 3.2.1 选取微处理器需要考虑的几个因素................................................................19 3.2.2 微处理器的选取................................................................................................20 3.2.3 最小系统的设计................................................................................................21 万方数据 太原理工大学硕士研究生学位论文 VI 3.3 无线数据收发电路的硬件设计...................................................................................23 3.3.1 井下无线通信频段的选择................................................................................23 3.3.2 无线模块简介及外围电路设计........................................................................24 3.4 离层仪硬件设计...........................................................................................................27 3.4.1 电池的选型........................................................................................................27 3.4.2 稳压芯片的选型................................................................................................28 3.4.3 位移数据采集模块的设计................................................................................29 3.4.4 LED 显示模块的设计.......................................................................................31 3.4.5 存储模块的设计................................................................................................33 3.4.6 报警模块的设计................................................................................................34 3.5 监测主机硬件设计.......................................................................................................35 3.5.1 LCD 液晶显示模块的设计...............................................................................35 3.5.2 实时时钟模块的设计........................................................................................37 3.5.3 SD 存储模块的设计..........................................................................................38 3.6 硬件抗干扰设计...........................................................................................................39 3.7 本章小结.......................................................................................................................40 第四章 顶板离层监测系统软件的开发.................................................................................41 4.1 开发平台 IAR Embedded Workbench 简介................................................................41 4.2 离层仪的单片机软件设计...........................................................................................42 4.2.1 软件的主程序设计............................................................................................42 4.2.2 定时采集存储子程序设计................................................................................44 4.2.3 外部光敏触发子程序设计................................................................................48 4.3 监测主机的单片机软件设计.......................................................................................48 4.3.1 监测主机的主程序............................................................................................49 4.3.2 按键子程序设计................................................................................................49 4.3.3 LCD 显示程序设计...........................................................................................50 4.3.4 SD 卡存储程序设计..........................................................................................54 4.4 系统通信软件设计.......................................................................................................55 4.5 软件抗干扰设计...........................................................................................................58 4.6 本章小结.......................................................................................................................59 万方数据 目录 VII 第五章 系统的调试.................................................................................................................61 5.1 功耗测试.......................................................................................................................61 5.2 传感器精度测试...........................................................................................................61 5.3 试验系统的搭建及测试...............................................................................................63 5.4 无线信号通信质量测试...............................................................................................67 5.5 本章小结.......................................................................................................................68 第六章 总结与展望.................................................................................................................69 6.1 结论...............................................................................................................................69 6.2 工作展望.......................................................................................................................70 参考文献...................................................................................................................................71 致谢.....................................................................................................................................75 作者在攻读硕士期间的研究成果...........................................................................................77 万方数据 太原理工大学硕士研究生学位论文 VIII 万方数据 第一章 绪论 1 第一章 绪论 1.1 课题背景和研究意义 从二十世纪中叶至今,我国经历了长期稳定高速的发展阶段,不仅成为了世界上最 大的能源生产国,而且能源消费总量也在世界上名列前茅,形成了五大能源全面发展的 能源供给体系,即煤炭、电力、石油、天然气、新能源、可再生能源[1]。其中,煤炭资 源占我国一次能源消耗总量的 70左右,在未来相当长的一段时间内,煤矿作为主体能 源的地位不会改变,煤炭工业仍将占据国民经济的重要战略地位[2]。 全球范围已探明煤炭资源储量占化石能源的 55,而在我国该比例竟高达 94。从 消费总量上看,我国煤炭消费增长是世界煤炭增长的主要动力[3]。2013 年,我国煤炭消 费量 36.5 亿吨,相比于 2005 年,增加了 13.3 亿吨,年均增长 5.8,占世界煤炭消费 量的 50.3。但同时,由于我国煤矿井下地质复杂,生产坏境恶劣,因此我国也是一个 煤矿事故多发的国家。近年来,党中央、国务院与地方各级政府一直保持着对煤矿安全 生产的高度重视,陆续出台了相关的制度和政策,并对煤矿安全管理机构进行了较为完 善的建立,高度重视相关安全设备以及仪器仪表的研制,并投入了大量的资金,使得煤 矿事故的发生率基本呈现下降趋势, 保证了煤矿企业的安全生产以及人员的生命安全[4]。 煤矿事故主要包括瓦斯、 顶板、 水灾、 火灾、 放炮、 运输、 机电等类型[5]。 根据 2004-2013 年全国煤矿事故分析报告,按事故类别分析了在 2004 到 2013 十年期间全国煤矿各 类事故起数及占比和各类事故死亡人数及占比,如表 1-1 和表 1-2 所示[6]。 表 1-1 2004-2013 年全国煤矿各类事故起数及占比 Tab.1-1 The national coal mine accidents and the number of accounts in 2004-2013 年份 瓦斯顶板水灾火灾运输其他 起数 /起 占比 / 起数/ 起 占比 / 起数 /起 占比 / 起数 /起 占比 / 起数 /起 占比 / 起数 /起 占比 / 200449213.5198554.51183.2170.558216.044712.3 200541412.5180554.61093.3110.353616.243113.1 200632711.1163355.41003.470.246715.941113.9 200727211.2129953.7632.6100.440916.936815.2 20081829.3103252.8593.0110.634817.832216.9 20091579.780549.8472.940.228517.631819.7 201014510.370250.0382.7120.924617.526018.6 万方数据 太原理工大学硕士研究生学位论文 2 20111199.956747.2443.740.323919.922819.0 2012729.236647.0243.150.614518.61621.5 2013599.827445.4213.530.510918.013822.8 累计223911.31046852.76233.1840.4336616.9309015.6 表 1-2 2004-2013 年全国煤矿各类事故死亡人数及占比 Tab.1-2 The national coal mine accident deaths and the number of accounts in 2004-2013 年份 瓦斯顶板水灾火灾运输其他 人数 /起 占比 / 人数/ 起 占比 / 人数 /起 占比 / 人数 /起 占比 / 人数 /起 占比 / 人数 /起 占比 / 2004190031.5230938.33575.9911.560510.076512.7 2005217136.6205834.760510.2581.05789.74687.9 2006131927.8190240.14178.8260.551710.956511.9 2007108428.6151840.12556.7721.945312.040410.7 200877824.2122238.02638.21113.540012.444113.7 200975528.793935.71666.3311.231912.142116.1 201062325.682934.12249.21686.928111.530812.7 201153327.066533.71929.7341.727914.127013.7 201235025.345933.21228.8271.920114.522516.3 201334832.632530.5898.3161.512411.616515.4 最近十年间,各类煤矿事故共发生 19870 起,死亡 33200 人。在各类煤矿事故中, 顶板事故发生起数和死亡人数均最多,总共 10