煤岩水力压裂诱发声发射波形特征及信号识别研究.pdf
国家自然科学基金项目(51874296)资助 国家自然科学基金项目(51504250)资助 国家自然科学基金项目(51774272)资助 中国博士后科学基金(2018M640533)资助 硕士学位论文 煤岩水力压裂诱发声发射波形特征及信号 识别研究 Characteristics of Hydraulic Fracturing Induced AE Waves and Signal Detection 作 者张 新 导 师李楠 副研究员 中国矿业大学 二○一九年五月 万方数据 学位论文使用授权声明 学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所 撰写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一,学位论文著作权拥有者须授权所在学校拥有学 位论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版 和电子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为 教学和科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案 馆、 图书馆等场所或在校园网上供校内师生阅读、 浏览。 另外, 根据有关法规, 同意中国国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 万方数据 中图分类号 TD8 学校代码 10290 UDC 622 密 级 公开 国家自然科学基金项目(51874296)资助 国家自然科学基金项目(51504250)资助 国家自然科学基金项目(51774272)资助 中国博士后科学基金(2018M640533)资助 中国矿业大学 硕士学位论文 煤岩水力压裂诱发声发射波形特征及信号识别研 究 Characteristics of Hydraulic Fracturing Induced AE Waves and Signal Detection 作 者 张新 导 师 李楠 申请学位 工学硕士 培养单位 矿业工程学院 学科专业 采矿工程 研究方向 岩体力学与岩层控制 答辩委员会主席 曹胜根 评 阅 人 匿名 二○一九年五月 万方数据 致谢 致谢 悠悠三载,转瞬即逝,总体上甘甜多于苦涩,收获多于教训。幸得黄炳香 教授、李楠副研究员的辛勤栽培和科学引导,为我今后的科研生涯和学术道路 奠定了坚实的基础。 感谢导师黄炳香教授,他高瞻远瞩,总能提纲挈领的抓住问题提的要害, 总能在必要的时候为我提供前进的方向,让我少走弯路提高科学研究效率。 感谢我的导师李楠副研究员在科研与学术上的悉心栽培和生活上的细心照 顾,给我提供优越的学习条件,激发我的学术兴趣,让我能够极大地提升自己 的科研水平和思维能力,带领我进入神圣的学术殿堂。同时也在教导我改变心 态顺应形势,接受现状并做出积极的改变。 同时感谢陈大勇、陈树亮、王桂峰老师在学术上给予我的指导。感谢张少 华、宋万星、关明亮、袁晓园老师在实验仪器和财务管理上给予的帮助。 感谢卢卫永、 赵兴龙、 刘江伟、 张权等博士在硕士期间为我提供宝贵意见, 感谢张佳兴、杨帆、田泽础、徐杰、王常委、白宇晴、邵鲁英、蔡青旺、李浩 泽、金峰、赵龙、陈斌、张昕等同学的帮助。感谢安全学院王笑然、陈栋、贾 海珊、孙炜辰博士在科研方法上的指点和实验仪器使用上的帮助。 特别感谢中国科学技术大学张海江教授及课题组所有成员,尤其感谢高级 老师、谭玉阳老师、钱佳威博士在学术理论和科学研究方法上给予我的巨大帮 助。 感谢党和国家的培养,感谢学校、学院各级单位领导同志的关爱和无私帮 助。 特别感谢父母及姐姐多年来对我的辛勤付出,无论我做什么决定,他们总 会无条件给予支持和鼓励。家永远是我最温暖的港湾,家人永远是我前进的最 大动力 最后,感谢百忙之中评审论文的各位专家、学者,谢谢你们提供宝贵的意 见。 张新 2019 年 5 月 20 日 万方数据 I 摘 要 摘 要 煤岩水力压裂技术广泛用于煤矿生产并且取得了很好地技术、经济效果, 已成为煤矿安全高效生产的重要技术保障,但是该技术一直缺少有效的监测手 段。本文采用微震/声发射理论和技术研究煤岩水力压裂声发射活动规律,从煤 岩水力压裂实验出发,以时频分析、希尔伯特-黄变换、双差定位为工具,以 MATLAB 编程为技术手段,研究煤岩破裂诱发的声发射波形特征;发展一种适 用于煤岩水力压裂实验的声发射事件识别方法;对水力压裂实验诱发的声发射 事件进行定位,研究煤岩破裂过程中裂缝动态变化。 通过自主设计并加工的实验系统成功的进行了煤岩水力压裂声发射监测实 验;水压力到达峰值、声发射能量到达峰值以及试块表面渗水是试块破裂的主 要现象;石灰岩和煤平均破裂水压力分别为 18.5 MPa 和 8.75 MPa,石灰岩和煤 试块破裂的峰值时间为 600-700 s,石灰岩峰值时间总体小于煤的峰值时间。 小波变换对实验中背景噪声分析结果表明实验过程中的背景噪声不影响声 发射监测系统对声发射信号的接收; 希尔伯特-黄变换能够对煤岩破裂声发射信 号进行处理并得到声发射波形的幅值、持续时间、衰减比、主频等特征参数。 水的参与使水力压裂实验声发射波形幅值比单轴压缩实验小;单轴压缩实验声 发射(AE)波形持续时间主要分布在 0.2 ms0.8 ms 范围内。水力压裂实验 AE 波形持续时间主要在 1.11.3 ms 间, 其中石灰岩 AE 波形持续时间普遍大于煤, 石灰岩 AE 波形的持续时间随围压的增加而变短;单轴压缩实验声发射波形衰 减比范围为 0.32-0.4 时,20的声发射波形能量变化呈现出慢升快降的特点, 当衰减比范围为 0.74-0.88 时,40的声发射波形能量呈现出快升慢降的特点。 水力压裂实验声发射波形衰减比为 94或 78,波形能量呈现出快升慢降的特 点。水的参与使石灰岩和煤水力压裂声发射波形的衰减比大于单轴压缩实验; 单轴压缩实验声发射波形的主频基本集中于 178 kHz 左右,石灰岩声发射波形 主频大于煤的声发射波形。水力压裂实验声发射波形主频范围为 160-170 kHz, 随着围压的增加水力压裂实验石灰岩声发射波形的主频降低。 利用水力压裂声发射事件自动识别方法求得水力压裂声发射信号的相似系 数范围为 0.06-0.16。 通过相似系数峰值识别出 1 s 内共有 9 组有效声发射事件; 将水力压裂声发射事件自动识别方法的处理结果与人为识别、不同门槛值条件 下的长短时窗方法处理结果进行比较,结果表明水力压裂声发射事件自动识别 方法操作灵活、识别效率较高,同时受波形信噪比的影响较小,拥有更小的漏 拾率和更高的准确率。 声发射事件定位处理结果表明围压加载会导致试块在四周及边缘位置产生 万方数据 II 能量较小的微破裂;将注水压裂过程划分为压裂初期、压裂中期和压裂后期。 压裂前期试块内部上方区域发生破裂但能量较小。压裂中期的 400 s 是水力压 裂实验煤破裂的主要阶段,裂缝主要在封孔器周围产生。主破裂发生后,压裂 后期煤试块基本已完全破碎,再次注水憋压试块破裂会沿着主裂缝所在方向向 试块外部扩展;煤水力压裂实验实际产生的裂缝走向并不是严格意义上平行于 最大主应力或垂直于最小主应力对自然条件下的试块进行取样具有随机性、 试块的加工精度以及加工过程对煤试块的完整性影响都会导致试块在压裂过程 中的受力不完全均匀,不均匀的受力状态导致试块产生不规则的裂缝。 论文有图 40 幅,表 8 个,参考文献 88 篇。 关键词关键词煤岩水力压裂;声发射监测;波形特征;信号识别;裂缝定位 万方数据 III Abstract Coal-rock hydraulic fracturing technology is widely used in coal mine and has achieved good technical and economic results. It has become an important technical guarantee for safe and efficient production of coal mine, but it does not have effective monitoring means. Micro-seismic/acoustic emission theories and technologies are used to study acoustic emissionAE activity in coal-rock hydraulic fracturing. Characteristics of AE waves induced by coal-rock fracture are studied by doing hydraulic fracturing experiments, using time-frequency analysis, Hilbert-Huang transation, double difference localization and MATLAB programming; A kind of AE events detection suitable for coal-rock hydraulic fracturing experiments is developed; The localization of AE events induced by hydraulic fracturing experiment is done to study the dynamic ation of fracture. The main phenomena of test block rupture are the peak of water pressure, the peak acoustic emission energy and the seepage on the surface of samples. The average cracking water pressures of limestone and coal are 18.5 MPa and 8.75 MPa, respectively. The peak rupture time of limestone and coal is 600-700 s. The peak rupture time of limestones is generally less than that of coals. The analysis of background noise in the experiment by wavelet transation shows that the background noise in the experiment process does not affect the reception of AE signal by AE monitoring system; Hilbert-Huang transation can process AE signal of coal-rock fracture and give the characteristics of AE wave, such as amplitude, arrival time, duration, attenuation ratio and dominant frequency. The amplitude of AE wave in hydraulic fracturing is smaller than that in uniaxial compression test; And the duration of AE waves in uniaxial compression test is mainly in the range of 0.2 ms to 0.8 ms. The duration of AE waves in hydraulic fracturing experiment is mainly between 1.1-1.3 ms, in which the duration of AE wave of limestone is generally longer than that in coal, and the duration of AE wave in limestone decreases with the increase of compressional pressure. When the attenuation ratio of AE wave in uniaxial compression experiment is between 0.32 and 0.4, 20 of AE waves’ energy increases slowly and drops rapidly. When the attenuation ratio is 0.74-0.88, 40 of AE waves’ energy shows the characteristics of fast rising and slow falling. The attenuation ratio of waves in hydraulic fracturing experiment is 94 or 78. 万方数据 IV Waves’ energy shows the characteristics of fast rising and slow falling. Water explains that attenuation ratio of acoustic emission waves in hydraulic fracturing of limestone and coal is larger than that in uniaxial compression test; The dominant frequency of AE waves in uniaxial compression test is about 178 kHz, and the dominant frequency of AE waves in limestone is larger than that in coal. The dominant frequency range of AE waves in hydraulic fracturing experiment is 160-170 kHz. With the increase of confining pressure, the dominant frequency of AE wave in hydraulic fracturing experiment limestone decreases. The semblance number of hydraulic fracturing AE signal obtained by automatic identification ranges from 0.06 to 0.16. Through the peak value of semblance number, nine groups of effective AE events can be detected in 1 s. Comparing the results of automatic AE event recognition for hydraulic fracturing with those of artificial identification and long-short window under different threshold conditions, the results show that the automatic AE event recognition for hydraulic fracturing is flexible, efficient and less affected by signal-to-noise ratio of wave and has less missed pick-ups and higher accuracy. The results of AE locsalization show that compressional pressure loading can cause small energy micro-fracture in the surrounding and edge of the sample; Water injection fracturing is divided into initial stage, middle stage and late stage of fracturing. In the initial stage, the upper region of the sample is fractured but the energy is small. The middle stage of fracturing is the main stage of coal’s fracturing in this experiment, and crack mainly occurs around the sealing packer. After the occurrence of the main fracture, the coal and stone blocks are basically completely fractured, and the fracture in late stage will extend to the outside of the sample along the direction of the main fracture; The final fracture produced by the hydraulic fracturing is not strictly parallel to the maximum principal stress or perpendicular to the minimum principal stress sampling of the sample under natural conditions is random. Or processing accuracy and the impact of processing on the integrity of the sample will lead to incomplete uni stress in the fracturing process, and uneven stress state will lead to irregular cracks in the test block. There are 40 figures, 8 tables and 88 reference papers Keywords coal-rock hydraulic fracturing; microseismic monitoring; wave characteristics; signal detection; fracture localization 万方数据 V 目 录 目 录 摘摘 要要............................................................................................................................ I 目目 录录........................................................................................................................... V 图清单图清单......................................................................................................................... IX 表清单表清单........................................................................................................................ XII 1 绪论绪论............................................................................................................................ 1 1.1 研究背景及意义 ..................................................................................................... 1 1.2 国内外研究现状 ..................................................................................................... 2 1.3 存在的问题与不足 ................................................................................................. 7 1.4 主要研究内容 ......................................................................................................... 9 1.5 研究方法及技术路线 ........................................................................................... 10 2 煤岩真三轴水力压裂声发射监测实验煤岩真三轴水力压裂声发射监测实验 ................................................................. 11 2.1 基本力学参数测定 ................................................................................................ 11 2.2 煤岩真三轴水力压裂声发射监测实验 ............................................................... 14 2.3 煤岩破裂实验结果 ............................................................................................... 19 2.4 本章小结 ............................................................................................................... 27 3 煤岩破裂诱发声发射波形特征煤岩破裂诱发声发射波形特征 ............................................................................. 29 3.1 希尔伯特-黄波形特征分析方法 ......................................................................... 29 3.2 煤岩单轴压缩破坏诱发声发射波形特征 ........................................................... 31 3.3 煤岩水力压裂声发射波形特征 ........................................................................... 34 3.4 煤岩破裂诱发声发射波形特征参数统计分析 ................................................... 38 3.5 本章小结 ............................................................................................................... 44 4 煤岩水力压裂诱发声发射事件自动识别方法煤岩水力压裂诱发声发射事件自动识别方法 ..................................................... 46 4.1 煤岩水力压裂声发射事件自定识别方法的组成 ............................................... 46 4.2 煤岩水力压裂声发射事件识别方法实现过程 ................................................... 47 4.3 水力压裂声发射事件识别方法的数据处理 ....................................................... 49 4.4 本章小结 ............................................................................................................... 54 5 煤岩水力压裂诱发声发射事件定位煤岩水力压裂诱发声发射事件定位 ..................................................................... 55 5.1 双差定位方法 ....................................................................................................... 55 5.2 煤岩水力压裂实验声发射事件的双差定位结果 ............................................... 57 万方数据 VI 5.3 本章小结 ............................................................................................................... 61 6 结论结论.......................................................................................................................... 63 参考文献参考文献 ..................................................................................................................... 66 作者简历作者简历 ..................................................................................................................... 72 学位论文原创性说明学位论文原创性说明 ................................................................................................. 73 学位论文数据集学位论文数据集 ......................................................................................................... 74 万方数据 VII Contents Abstract ......................................................................................................................... I Contents ....................................................................................................................... V List of Figures ............................................................................................................ IX List of Tables ............................................................................................................. XII 1 Introduction ............................................................................................................... 1 1.1 Research background and significance .................................................................... 1 1.2 Reviews at Home and Abroad .................................................................................. 2 1.3 Problems and Shortages in the Research ................................................................. 7 1.4 Research Contents .................................................................................................... 9 1.5 Research and Workflow ............................................................................ 10 2 Monitoring for Truly Triaxial Hydraulic Fracturing .......................................... 11 2.1 Determination of Mechanical Properties of Coal and Limestone .......................... 11 2.2 the Acoustic Emission Monitoring for Truly Triaxial Hydraulic Fracturing ......... 14 2.3 Results of the Cracking Experiments of Limestone and Coal ............................... 19 2.4 Summery ................................................................................................................ 27 3 Characteristics of Waves Induced by Cracking of Limestone and Coal ... 29 3.1 the of Hilbert-Huang Transation ....................................................... 29 3.2 Results of Time-frequency Transation for Uniaxial Compression ................. 31 3.3 Results of Time-frequency Transation in Hydraulic Fracturing .................... 34 3.4 Statistics of Wave Characters Induced by Cracking of Coal and Limestone . 38 3.5 Summery ...............................................................