含瓦斯煤损伤破坏红外辐射特征及表面计算应力场研究.pdf
工程硕士专业学位论文 含瓦斯煤损伤破坏红外辐射特征及 表面计算应力场研究 Study on Infrared Radiation Temperature Characteristics and Surface Computational Stress Field of Gassy Coal Damage 煤炭资源与安全开采国家重点实验室自主研究课题(SKLCRSM15X03) 作 者程富起 导 师李忠辉 教授 中国矿业大学 二〇一九年五月 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 万方数据 中图分类号 TD76 学校代码 10290 UDC 622 密 级 公开 中国矿业大学 工程硕士专业学位论文 含瓦斯煤损伤破坏红外辐射特征及 表面计算应力场研究 Study on Infrared Radiation Temperature Characteristics and Surface Computational Stress Field of Gassy Coal Damage 作 者 程富起 导 师 李忠辉 教授 申请学位 工程硕士 培养单位 安全工程学院 学科专业 安全工程 研究方向 安全监测监控 答辩委员会主席 刘贞堂 教授 评 阅 人 李增华 王云刚 二○一九年五月 万方数据 致谢 致谢 时光荏苒,在中国矿业大学安全工程学院三年的硕士学习生活就要结束了。 这三年的时光中既浪漫又短暂,在实验室辛勤实验、在办公室撰写论文,其中充 满酸甜苦辣,更有收获和成长。在毕业论文即将完成之际,我要对各位老师、师 兄弟们表达我诚挚的谢意。 首先,我衷心的感谢我的导师李忠辉教授。从论文的选题、提纲、写作到修 改,都凝聚着导师李忠辉教授的心血。师从三载,导师富有前瞻性的敏锐眼光、 统观全局的决策能力,不仅教给专业知识和独到的科研方法,而且以身作则,以 充沛的精力、高度的责任心和严谨踏实的作风投入到研究和教学中,所有这一切 都深深的影响着我,这将让我终身受益。 其次,我要特别感谢王恩元教授、刘贞堂教授在学业与生活上给与的关心与 照顾,两位老师高屋建瓴的科研精神、务实创新的科研作风、一丝不苟的工作态 度和宽厚待人的高尚品德是我一生学习的榜样。 感谢课题组沈荣喜副教授、刘晓斐副教授、赵恩来讲师和冯小军讲师三年来 在我学业上的指导与关心。 感谢李学龙博士、钮月博士、殷山博士在科研规划与论文写作给与的具体指 导,感谢刘帅杰硕士、孔艳慧硕士、曹康硕士、张昕硕士、王雪妮硕士、田贺硕 士、姜永鑫硕士、郑安琪硕士、何顺硕士、王枫植硕士等在实验和数据处理方面 的大力帮助。 感谢孔彪博士、邱黎明博士、孔祥国博士、张志博博士、李保林博士、王笑 然博士、贾海珊博士、李德行博士、汪皓博士、钱继发博士、刘泉霖博士、狄阳 洋博士、魏洋硕士、孙英豪硕士、王聪硕士、张瑞硕士、夏善奎硕士、刘浩雄硕 士、郑向欣硕士、张酉年硕士、杨瑞鹏硕士、杨帅硕士等课题组师兄弟在日常生 活、学习中的无私帮助,在此一并致以由衷的谢意 感谢我的同窗好友闫道成硕士、韦守朋硕士、李宁宁硕士、李光华硕士、樊 德强硕士、史徐茂硕士在生活上给与的帮助,使我度过了一段愉快的时光。 最后,特别感谢我的家人多年以来对我的求学生涯给与无私的关爱与支持, 感谢我的父母多年以来辛勤工作、无私付出,他们的期待是我前进的不竭动力和 信心源泉。 特别感谢百忙之中评审论文的专家、 教授, 并热切希望得到您的指导和帮助 万方数据 I 摘要摘要 随着煤矿逐步进入深部开采, 煤体受地应力和瓦斯压力共同作用的后果愈发 明显, 瓦斯参与条件下的煤体破坏表现出不同于无瓦斯作用下煤体破坏特性,因 此对瓦斯应力综合作用下煤体损伤破坏过程的红外辐射特征及损伤演化机理研 究具有较高的理论价值和实践意义。 为研究含瓦斯煤损伤破坏的红外辐射特征及 损伤演化机理本文自主研制了应力瓦斯耦合破坏红外实验系统, 并对含瓦斯煤体 进行单轴压缩红外辐射实验; 分析了含瓦斯煤损伤过程中红外辐射温度随瓦斯压 力的变化规律; 研究了含瓦斯煤损伤破坏红外辐射温度的分形特征及多重分形特 征; 根据损伤力学理论建立基于红外辐射温度的含瓦斯煤损伤演化模型,研究了 含瓦斯煤损伤演化特征; 推导出了基于红外辐射温度计算煤体表面应力的数学方 法;研究了含瓦斯煤损伤破坏红外热像与裂纹发育及表面计算应力场的相关性。 具体研究成果如下 含瓦斯煤损伤破坏过程中会引起最高红外辐射温度的变化; 并且最高红外辐 射温度曲线具有阶段性。瓦斯的存在能够减小煤样能量的积聚速率,并降低应变 能的释放速率。随着瓦斯压力的增大,煤样的应变能呈现出逐渐减小的趋势。含 瓦斯煤相同时间点的最高红外辐射温度累计量与应变能够很好的符合 ya exp-x/b指数函数关系。 含瓦斯煤破坏产生的红外辐射温度信号具有明显的分型特征和多重分形特 征。含瓦斯煤损伤破坏各时间段红外辐射温度的 Hurst 指数均大于 0.5,表明红 外辐射温度与时间呈现正相关性;含瓦斯煤损伤破坏的红外辐射温度的平均 Hurst 指数随着瓦斯压力增大而减小,并含瓦斯煤红外辐射温度的分形维数 D 介 于 1.0-1.5 之间;红外辐射温度信号在不同时间段的多重分形谱的形态变化能够 很好的反应含瓦斯煤破坏过程,其由左钩状向右钩状的转变、特别是失稳破坏时 出现的明显的右钩状可作为评估含瓦斯煤体危险性的一种方法。 根据损伤力学理论建立了基于红外辐射温度的含瓦斯煤损伤演化模型; 基于 红外辐射温度的含瓦斯煤损伤-应变曲线与应力-应变曲线在煤体失稳破坏前具 有很高的相关性,损伤-应变曲线能够很好的反应煤体应力应变过程;不同瓦斯 压力下的煤损伤-应变曲线在损伤破坏阶段均表现出急剧加速现象;基于红外辐 射温度的含瓦斯煤损伤演化模型的计算应力和实测应力的相关性达到了0.7以上, 呈显著相关, 说明基于最高红外辐射温度累计量的含瓦斯煤损伤的计算应力能够 很好的反应含瓦斯煤损伤破坏过程中的实测应力。 基于红外辐射温度的含瓦斯煤损伤演化模型, 推导了出基于红外辐射温度计 算煤体表面计算应力场的数学公式; 通过对含瓦斯煤表面计算应力场云图与裂纹 万方数据 II 发展图片分析, 发现含瓦斯煤表面计算高应力区的发展过程与煤体损伤破坏过程 具有良好的对应关系;在塑性阶段和应力峰后破坏阶段,含瓦斯煤损伤破坏的红 外热像和红外差值云图出现的高温点、高温条带、高温区域与煤体裂隙的发育及 表面计算应力场的高应力区分布状态有良好的对应关系。 该论文有图 40 幅,表 3 个,参考文献 81 篇。 关键词关键词含瓦斯煤;红外辐射;损伤演化;表面计算应力场 万方数据 III Abstract With the gradual entry of coal mine into deep mining, the combined effect of in-situ stress and gas pressure on coal body is more obvious. Under the condition of gas participation, the failure characteristics of coal body are different from those of coal without gas. Therefore, it is of great theoretical and practical significance to study the infrared radiation characteristics and damage evolution mechanism of coal and rock damage and failure process under the combined action of gas stress. In order to study the infrared radiation characteristics and damage evolution mechanism of gassy coal damage, we independently developed the stress-gas coupling damage infrared experimental system. We use this experimental system to carry out uniaxial compression infrared radiation experiment on gassy coal, and analyze the variation of infrared radiation temperature with gas pressure during the damage process of gassy coal, and study the fractal and multifractal characteristics of gassy coal damage infrared radiation temperature. According to the damage mechanics theory, we established the damage evolution model of gassy coal based on infrared radiation temperature, and studied the damage evolution characteristics of gassy coal, and deduced the mathematical of coal surface calculate stress based on infrared radiation temperature, and studied the correlation between infrared thermal image of gassy coal damage and crack development and surface computational stress field. The specific research results are as follows The maximum infrared radiation temperature will change during the damage process of coal containing gas, and the maximum infrared radiation temperature curve has stages. The existence of gas can reduce the accumulation rate of coal sample energy and the release rate of strain energy. With the increase of gas pressure, the strain energy of coal sample decreases gradually. The cumulative measurement of maximum infrared radiation temperature and strain energy of gassy coal are in good agreement with the exponential function of ya*exp-x/b. Infrared radiation temperature signals produced by gas-bearing coal rupture have obvious classification and multifractal characteristics. Hurst exponent of infrared radiation temperature of gas-bearing coal is greater than 0.5 in each damage period, and the infrared radiation temperature is positively correlated with time. The average Hurst exponent of infrared radiation temperature decreases with the increase of gas pressure, and the fractal dimension D is between 1.0 and 1.5. The multi-fractal 万方数据 IV spectrum of infrared radiation temperature signals can well reflect the process of gas-bearing coal rupture in different time periods, which changes from left hook to right hook. Especially, when the coal is destroyed, the right hook appears obviously. According to damage mechanics theory, a damage evolution model of gassy coal based on infrared radiation temperature is established. The damage-strain curve, which based on infrared radiation temperature, and the stress-strain curve of gassy coal have a high correlation before the instability and failure of coal body, and the damage-strain curve can well reflect the stress-strain process of coal body. The damage-strain curves of coal under different gas pressures show a sharp acceleration phenomenon in the damage stage, and the correlation between calculated stress and measured stress of gassy coal is more than 0.7, that showing a significant correlation, indicating that the calculated stress can well reflect the measured stress in the gassy coal damage process. Based on the infrared radiation temperature-containing gas damage evolution model, we derive a mathematical ula for calculating the surface computational stress field of coal based on infrared radiation temperature. Through the analysis of stress field nephogram and crack development picture of calculating surface of gassy coal, we find that the development process of high calculating surface stress area has a good correspondence with the coal body damage process. In the plastic phase and the post-stress peak failure stage, the high temperature point, high temperature band and high temperature area appear on the infrared thermal image and infrared difference cloud image of gassy coal, which has a good correspondence with the development of coal body fissure and the distribution state of surface computational stress field and high stress area. There are 40 figures, 3 tables, 81 references in this thesis. Keywords gassy coal; infrared temperature; damage evolution; surface computational stress field 万方数据 V 目录目录 摘要摘要 ........................................................................................................................... I 目录目录 ..........................................................................................................................V 图清单图清单 ...................................................................................................................VII 表清单表清单 ...................................................................................................................XII 变量注释表变量注释表 ......................................................................................................... XIII 1 绪论绪论 ....................................................................................................................... 1 1.1 研究背景及意义 ................................................................................................. 1 1.2 国内外研究现状 ................................................................................................. 2 1.3 存在问题及不足 ................................................................................................. 3 1.4 主要研究内容及技术路线 .................................................................................. 4 2 含瓦斯煤损伤破坏红外辐射实验研究含瓦斯煤损伤破坏红外辐射实验研究 ................................................................. 6 2.1 实验系统............................................................................................................. 6 2.2 试样制备........................................................................................................... 10 2.3 实验方案及步骤 ................................................................................................ 11 2.4 本章小结............................................................................................................ 11 3 含瓦斯煤损伤破坏红外辐射温度特征研究含瓦斯煤损伤破坏红外辐射温度特征研究 ....................................................... 12 3.1 含瓦斯煤破坏过程红外辐射温度分析 ............................................................ 12 3.2 含瓦斯煤损伤破坏红外辐射温度的分形特征 ................................................. 21 3.3 含瓦斯煤损伤破坏红外辐射温度的多重分形特征 ......................................... 30 3.4 本章小结........................................................................................................... 33 4 基于红外辐射温度的含瓦斯煤损伤演化及表面计算应力场研究基于红外辐射温度的含瓦斯煤损伤演化及表面计算应力场研究 ..................... 34 4.1 基于红外辐射温度的含瓦斯煤损伤演化模型 ................................................. 34 4.2 基于红外辐射温度的含瓦斯煤损伤演化分析 ................................................. 36 4.3 基于红外辐射温度的含瓦斯煤表面计算应力场演化成像分析 ...................... 39 4.4 含瓦斯煤损伤破坏红外热像与裂纹发育及表面计算应力场关系分析 .......... 47 4.5 本章小结........................................................................................................... 53 5 总结与展望总结与展望.......................................................................................................... 55 5.1 全文总结 .......................................................................................................... 55 5.2 创新点 ............................................................................................................. 56 万方数据 VI 5.3 展望 .................................................................................................................. 56 参考文献参考文献 ................................................................................................................ 57 作者简介作者简介 ................................................................................................................ 63 学位论文原创性声明学位论文原创性声明 ............................................................................................. 65 学位论文数据集学位论文数据集 ..................................................................................................... 67 万方数据 VII Contents Abstract ................................................................................................................ III Contents ..............................................................................................................VII List of Figures ........................................................................................................ IX List of Tables .........................................................................................................XII 1Introduction ........................................................................................................... 1 1.1 Research Background and Significance ............................................................... 1 1.2 Research Status at Home and Abroad................................................................... 2 1.3Problems and Deficiencies .................................................................................... 3 1.4Research Contents and Technical Route ................................................................ 4 2Experimental Study on Infrared Radiation Temperature of Gassy Coal Damage .................................................................................................................................. 6 2.1 Experimental System ........................................................................................... 6 2.2 Sample Preparation ............................................................................................ 10 2.3 Experimental Program and Steps ........................................................................ 11 2.4 Brief Summary ................................................................................................... 11 3Study on Infrared Radiation Temperature Characteristics of Gassy Coal Damage .................................................................................................................. 12 3.1 Infrared Radiation Temperature Analysis of Gassy Coal Damage ....................... 12 3.2 Fractal Characteristics of Infrared Radiation Temperature for Gassy Coal Damage ................................................................................................................................ 21 3.3Multifractal Characteristics of Infrared Radiation Temperature for Gassy Coal Damage ................................................................................................................... 30 3.4 Brief Summary .................................................................................................. 33 4Damage Evolution and Surface computational Stress Field of Gassy Coal Based on Infrared Radiation Temperature ..................................................................... 34 4.1Damage Evolution Model of Gassy Coal Based on Infrared Radiation Temperature ................................................................................................................................ 34 4.2Damage Evolution Analysis of Gassy Coal Based on Infrared Radiation Temperature ............................................................................................................ 36 4.3Imaging Analysis of Surface Computational Stress Field Evolution of Gassy Coal 万方数据