FLAC3D中锚杆拉、剪破断力学模型二次开发及应用.pdf
硕士学位论文 FLAC3D中锚杆拉、剪破断力学模型 二次开发及应用 Secondary Development of Bolt Tensile and Shear Broken Mechanical Models in FLAC3D and Its Application 作 者宋远霸 导 师闫 帅 讲师 中国矿业大学 二○一八年五月 国家自然科学基金项目(51604268、51574227) 江苏省高校优势学科建设工程资助项目(PAPD) 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 万方数据 中图分类号 TD353 学校代码 10290 UDC 622 密 级 公 开 中国矿业大学 硕士学位论文 FLAC3D中锚杆拉、剪破断力学模型 二次开发及应用 Secondary Development of Bolt Tensile and Shear Broken Mechanical Models in FLAC3D and Its Application 作 者 宋远霸 导 师 闫 帅 申请学位 工学硕士 培养单位 矿业工程学院 学科专业 采矿工程 研究方向 岩体力学与岩层控制 答辩委员会主席 李桂臣 评 阅 人 盲 审 二○一八年五月 万方数据 致致 谢谢 2015 年 9 月份,怀揣着一颗学习的心,我来到了中国矿业大学攻读硕士研 究生,转瞬之间,到了 2018 该毕业的一年,在论文完成之际,心中时长充满感 激之情,尤其感谢家人的支持与鼓励,导师的细心教导,以及师兄、同窗及师弟 们的帮助,接下来,用我有限的语言来表达我无限的感激之情。 首先感谢闫帅导师对我研究生三年期间的传道、授业、解惑之恩,在论文的 选题、写作过程中,遇到过许多问题,闫老师都悉心地指导,极具耐心;每写完 一章,闫老师都会悉心查看,字字句句,一丝不苟,并指出写作不当的地方,指 导该怎么修改。导师不仅在科研中给予帮助,在煤矿井下现场也时长给我讲解相 关安全、技术事项,对技术参数把握相当严格,让我养成了严肃认真对待事物的 习惯。导师待人的亲和、处事的认真以及积极向上勇攀学术高峰的精神,在我心 中留下了印记,一直鼓励着我不断前行。 感谢课题组柏建彪教授、王襄禹教授、徐营副教授和陈勇讲师在我求学路上 的帮助,尤其感谢柏建彪老师和徐营老师在生活上的帮助,感谢王襄禹老师对现 场问题的指导,陈勇老师对高质量论文的推荐,谢谢你们。 感谢课题组张自政博士、神文龙博士、郝胜鹏博士、曹其嘉硕士、李国栋硕 士、曹启正硕士、申晓辉硕士、周玄硕士、刘天啸硕士、徐博彪硕士、王瑞硕士 和赵天昊硕士等,在生活、论文写作过程中的帮助,还要感谢解嘉豪硕士、康凯 硕士、 谢正正博士舍友们以及同在矿大读研的本科同学鹿亮亮博士在生活中的帮 助。 感谢中国矿业大学煤炭资源与安全开采国家重点实验室高杰老师在数值计 算方面提供的硬件帮助,感谢肖家洼煤矿、东庞矿、新景煤矿等技术科科室人员 在煤矿现场给予的帮助与支持,尤其感谢肖家洼煤矿于杰科长、尚延辉和贾遵锋 技术主管在煤矿现场及资料提供方面的帮助。 感谢父母和姐姐长期对我的支持与鼓励,家人总是能够在我遇到挫折,心情 不畅快时给我及时“充电” ,教育我老老实实做人,踏踏实实做事,正是由于你 们,我才能一步一步不断向前,去实现自我的价值。 最后感谢各位专家在百忙之中评审我的论文, 感谢参考文献当中所有的专家 学者,尤其感谢山东科技大学李为腾老师在数值计算方面给予过的指导,谢谢你 们的启迪。 宋远霸 2018 年 5 月 22 日 万方数据 I 摘摘 要要 为弥补FLAC3D中锚杆拉伸破断原始模型以任意锚杆单元节点塑性拉应变为 破断判别标准的缺陷以及解决程序无法实现锚杆剪切破断的问题,本文基于 PILE 锚杆结构单元,依据实验室数据,提出新的拉、剪破坏准则,对原有拉、 剪力学模型进行修正,建立拉、剪破断修正力学模型,并采用 Fish 编程语言二 次开发, 将修正模型嵌入到 FLAC3D主程序中。 分别采用锚杆拉、 剪试验验证拉、 剪破断修正力学模型的合理性, 并分析了两种修正模型各自的工程适用性与可靠 性,主要研究成果如下 (1)为进一步完善拉伸破断原始力学模型,建立以锚杆自由段整体伸长率 为破断判别标准的拉伸破断修正力学模型, 当自由段伸长率大于或等于锚杆破断 伸长率时,构成锚杆自由段伸长量最大的结构单元发生破断;建立以剪力为破断 判别标准的剪切破断修正力学模型, 当杆体剪力大于或等于锚杆极限抗剪载荷时, 锚杆发生剪切破断。 (2)锚杆杆体拉伸试验中,拉伸破断原始模型杆体伸长率为预设破断伸长 率的 51.5时,杆体过早发生破断,而拉伸破断修正模型杆体伸长率达到预设破 断伸长率时发生拉伸破断,结果更加符合实际;锚杆杆体剪切试验中,剪切原始 模型杆体所受剪力超过抗剪载荷时,随着剪切位移的增大,杆体的剪力呈现继续 增大的现象,与实际不符,而剪切破断修正模型杆体剪切荷载-位移曲线呈现出 剪切破断特征,达到了以剪力为判据的定量破断。 (3)建立了一种锚杆以受拉为主的数值计算模型,实现了锚杆自由段端头 及自由段与锚固段交界面位置的锚杆破断现象。 拉伸破断修正模型只有位于巷帮 的四根锚杆发生破断,而拉伸破断原始模型锚杆全部发生破断,修正模型结果更 加符合实际;修正模型围岩最大水平及垂直位移分别为 395mm 和 298mm,而原 始模型围岩最大水平及垂直位移分别为 428mm 和 332mm, 原始模型较修正模型 围岩变形强烈,这是由于原始模型锚杆全部破断导致的。 (4)建立了一种锚杆穿交界面,以受剪为主的数值计算模型,本文以煤岩 交界面大变形滑移回采巷道模型为例,剪切破断修正模型条件下,实现了肩角锚 杆的剪切破断现象,且修正模型煤岩交界面最大滑移量比原始模型大 13.1mm, 结果更符合实际。 (5)最后,将拉伸破断修正模型应用于分析肖家洼煤矿 11 采区玻璃钢锚杆 破断失效问题,指出锚杆受掘进及相邻工作面侧向支承压力影响较小,在本工作 超前支承压力作用下,锚杆自由段伸长率迅速增大,并超过其破断伸长率,进而 发生破断。 原有 16mm1600mm 玻璃钢锚杆自由段长度较小, 极限伸长量较小, 直径较小,抗拉载荷较小,不能给围岩提供足够的支护反力,于是对锚杆尺寸进 万方数据 II 行参数优化,最终确定杆体尺寸为 22mm2200mm,此时杆体能够承受超前支 承压力的影响并保持完整状态。 该论文有图 72 幅,表 12 个,参考文献 86 篇。 关键词关键词锚杆;PILE 结构单元;FLAC3D二次开发;修正力学模型;拉、剪破断 失效;支护参数优化 万方数据 III Abstract In order to compensate for defects of tensile broken original model in FLAC3D which takes plastic tensile strain of each bolt element node as the broken criterion and solve the problem that the shear broken failure of bolts cannot also be simulated with this program, the new tensile and shear broken criterions were thus proposed based on the PILE structural elements according to the laboratory data. The tensile and shear broken modified mechanical models were established and embedded into FLAC3D with Fish programming language. The rationalities of tensile and shear broken modified mechanical models were verified by the direct tensile and shear tests of bolts respectively and the engineering applicability and reliability of the two modified models were analyzed. The main research achievements were as follows 1 To further improve the tensile broken original mechanical model, the tensile broken modified mechanical model taking the whole elongation rate of the bolt free section as the broken criterion was established, and the structural element with the largest elongation of the bolt free section broke while the elongation rate of the bolt free section exceeded the bolt broken elongation rate. The shear broken modified mechanical model taking the bolt shear force as the broken criterion was established, and the bolts were broken while their shear force exceeded the bolt ultimate shear force. 2 In the direct tensile tests, the bolt with tensile broken original model broke prematurely while its elongation rate was 51.5 of the preset broken elongation rate, and the one with tensile broken modified model broke while its elongation rate was equal to the preset broken elongation rate, therefore the result of modified model was more realistic. In the direct shear tests, the shear force of bolt with shear original model increased with the increasing shear displacement while it exceeded the ultimate shear force, which was not consistent with the reality. The shear load-displacement curve with the shear broken modified model presented the shear broken failure characteristics,and the quantitative broken effect was achieved through the shear force judgment. 3 A numerical calculation model was established in which the bolts were mainly subjected to tension and the tensile breakage phenomenon of the elements composing of the free section at the end of the free sections and the interface between free and anchor sections was implemented. There were only four bolts broken with the tensile broken modified model at the side roadway while the whole bolts broke 万方数据 IV with the tensile broken original model, and the result of modified model was more realistic. The maximum horizontal and vertical displacement of roadway surrounding rock with modified model were 395mm and 298mm respectively while they were 428mm and 332mm respectively with original model, and the tensile broken failure of the whole bolts led to the serious deation of surrounding rock with original model. 4 A numerical calculation model was established in which the bolts through the interface were mainly subjected to shear force, and a mining roadway model with large coal-rock interface slippage was given in this paper. The shear breakage phenomenon of the shoulder bolts with shear broken modified model through the interface was implemented. The greatest calculated sliding displacement at the coal-rock interface with the modified model was 13.1 mm larger than that with the original model,and the result was more realistic. 5 Finally, the tensile broken modified model was applied to analyze the broken failure phenomenon of GFRP bolts in 11 mining area of XiaoJiawa coal mine. It is pointed out that the bolts were little affected by the excavation and the side abutment pressure caused by the mining of an adjacent panel, and they were greatly affected by the front abutment pressure caused by the mining activity of the current panel, which led to the rapid increase of the elongation rate of free section, causing the broken failure phenomenon of GFRP bolts while its elongation rate exceeded the broken elongation rate. The GFRP bolts of original support scheme was 1600mm long, whose diameter was 16mm, which led to a small ultimate elongation and axial force of the free section, and they were unable to provide adequate support reaction to surrounding rock. Therefore the size of GFRP bolts was optimized and the final determination diameter was 22mm and the length was 2200mm. At this point, the GFRP bolts could bear the influence of the front abutment pressure, and there were no broken failure characteristics. There are 72 figures, 12 tables and 86 references. Keywords bolt; PILE structural elements; FLAC3D secondary development; modified mechanical model; tensile and shear broken failure; optimization of support parameters 万方数据 V 目目 录录 摘摘 要要...................................................................................................................................... I 目目 录录..................................................................................................................................... V 图清单图清单................................................................................................................................. IX 表清单表清单.............................................................................................................................. XIV 变量注释表变量注释表 ....................................................................................................................... XV 1 绪论绪论..................................................................................................................................... 1 1.1 研究背景与意义 ............................................................................................................. 1 1.2 国内外研究现状 ............................................................................................................. 2 1.3 主要研究内容与方法 ..................................................................................................... 6 2 FLAC3D中现有中现有 PILE 结构单元及其局限性结构单元及其局限性 .................................................................. 9 2.1 PILE 结构单元基本组成及原理 .................................................................................... 9 2.2 PILE 结构单元轴向力学模型及其局限性 .................................................................. 11 2.3 PILE 结构单元剪切力学模型及其局限性 .................................................................. 12 2.4 PILE 结构单元特征 ...................................................................................................... 12 2.5 本章小结 ....................................................................................................................... 13 3 PILE 结构单元修正力学模型及其程序实现与合理性验证结构单元修正力学模型及其程序实现与合理性验证 ........................................ 14 3.1 PILE 结构单元拉伸破断修正力学模型 ...................................................................... 14 3.2 PILE 结构单元拉伸破断修正力学模型的程序实现与合理性验证 .......................... 15 3.3 PILE 结构单元剪切破断修正力学模型 ...................................................................... 20 3.4 PILE 结构单元剪切破断修正力学模型的程序实现与合理性验证 .......................... 20 3.5 本章小结 ....................................................................................................................... 24 4 拉伸破断修正力学模型的工程适用性分析拉伸破断修正力学模型的工程适用性分析 .................................................................. 26 4.1 试验方案设计 ............................................................................................................... 26 4.2 数值模型的建立及材料参数的确定 ........................................................................... 27 4.3 巷道围岩变形及锚杆最终状态分析 ........................................................................... 28 4.4 锚杆拉伸破断过程分析 ............................................................................................... 31 4.5 本章小结 ....................................................................................................................... 42 5 剪切破断修正力学模型的工程适用性分析剪切破断修正力学模型的工程适用性分析 .................................................................. 43 5.1 试验方案设计 ............................................................................................................... 43 5.2 数值模型的建立及材料参数的确定 ........................................................................... 44 5.3 煤岩交界面滑移变形及锚杆最终状态分析 ............................................................... 45 万方数据 VI 5.4 锚杆剪切破断过程分析 ............................................................................................... 47 5.5 本章小结 ....................................................................................................................... 52 6 肖家洼煤矿玻璃钢锚杆破断失效分析及支护参数优化肖家洼煤矿玻璃钢锚杆破断失效分析及支护参数优化 .............................................. 54 6.1 工程地质概况及巷道支护参数 ................................................................................... 54 6.2 玻璃钢锚杆破断失效分析及支护参数优化 ............................................................... 56 6.3 本章小结 ....................................................................................................................... 61 7 主要结论主要结论 .......................................................................................................................... 62 参考文献参考文献 ............................................................................................................................. 64 作者简历作者简历 ............................................................................................................................. 70 学位论文原创性声明学位论文原创性声明 ......................................................................................................... 71 学位论文数据集学位论文数据集 ................................................................................................................. 72 万方数据 VII Contents Abstract .............................................................................................................................. III Contents ............................................................................................................................ VII List of Figures .................................................................................................................... IX List of Tables ................................................................................................................... XIV List of Variables ................................................................................................................ XV 1 Introduction ....................................................................................................................... 1 1.1 Research Background and Significance .......................................................................... 1 1.2 Research Status at Home and Abroad ............................................................................. 2 1.3 Main Research Contents and s ............................................................................ 6 2 PILE Structural Elements in FLAC3D and Their Limitations ...................................... 9 2.1 Basic Components and Principles of PILE Structural Elements ..................................... 9 2.2 Axial Mechanical Model of PILE Structural Elements and Its Limitation ................... 11 2.3 Shear Mechanical Model of PILE Structural Elements and Its Limitation ................... 12 2.4 Characteristics of PILE Structural Elements ................................................................. 12 2.5 Brief Summary .............................................................................................................. 13 3 Mo