液压支架自主跟机关键技术研究.pdf
博士学位论文 液压支架自主跟机关键技术研究 Research on Key Technologies of Autonomous Following Mining Machine for Hydraulic Support 作 者张 霖 导 师王忠宾教授 中国矿业大学 二〇一七年十月 万方数据 中图分类号 TD421.6 学校代码 10290 UDC 622.2 密 级 公开 中国矿业大学 博士学位论文 液压支架自主跟机关键技术研究 Research on Key Technologies of Autonomous Following Mining Machine for Hydraulic Support 作 者 张霖 导 师 王忠宾 申请学位 工学博士 培养单位 机电工程学院 学科专业 机械制造及其自动化 研究方向 机电装备自动化 答辩委员会主席 评 阅 人 二〇一七年十月 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 万方数据 致谢致谢 本论文是在导师王忠宾老师的悉心指导下完成的。在硕博学习的五年期间, 王忠宾老师在研究工作等方面给予了我很多的指导、 关心和帮助, 没有他的指导、 鼓励,论文是不可能得以顺利完成的。师从五载,收获颇丰,感触亦深。王忠宾 老师优秀的做人品质,严谨的科研精神、精益求精的工作作风以及严谨的科学态 度,令我折服,这也是导师传授给我的最宝贵的财富。在此,谨向我的导师致以 深深的敬意 在五年的学习和生活中还受到了课题组谭超老师、 黄嘉兴老师、 闫海峰老师、 周晓谋老师、姚新港老师、杨寅威老师、韩振铎老师和刘新华老师悉心的指导和 帮助。他们远筹帷幄、睿智深邃,是我学习的榜样和追逐的目标在这里同样对 他们致以深深的敬意 另外,感谢司垒、许静、刘泽、徐西华、汪佳彪、刘译文、李楚、王如、路 绪良、魏东、蒋干、满溢桥、和樊凯等课题组的同窗给予我的帮助。与他们相处 的时间里,从他们身上学到了很多我所不具备的知识和品质,感谢他们 还要感谢苏州福德保瑞科技发展有限公司和中煤张家口煤矿机械有限责任 公司的领导和全体员工,感谢他们在我课题研究和试验过程中给予的大力支持 同时,感谢我的家人在我求学期间给予我始终如一的鼓励、关怀和帮助。 最后,谨以此文献给所有关心、支持、帮助我的老师、同学以及亲朋好友。 万方数据 I 摘摘 要要 综采工作面的“少人化”和“无人化”对于实现煤矿安全高效生产具有重要 意义,液压支架作为煤矿综采工作面关键机电装备之一,其自动化和智能化水平 直接影响着整个综采工作面的安全生产和开采效率, 而自主跟机控制是实现液压 支架智能化的必要条件。 当前的电液控制液压支架基本实现了设定程序模式下的 自动化跟机控制,还不能满足液压支架智能控制的需求。因此,有必要针对液压 支架的自主跟机控制关键技术进行研究, 为综采工作面提供更为智能可靠的安全 支护保障,进而提高煤矿综采工作面的智能化开采水平。 本文以液压支架自主跟机控制为目标,针对液压支架位姿监测、跟机决策以 及自主调控等关键技术进行了深入研究,主要研究成果如下 (1)研究了液压支架的自主跟机原理,建立了液压支架自主跟机模型,搭 建了液压支架自主跟机控制系统的总体架构,进行了控制系统设计,并分析了液 压支架自主跟机控制系统的硬件与软件组成。 (2)分析了理想与非理想状态下的液压支架支护位姿,设计并定义了液压 支架自主跟机过程中的工作空间及其状态变量, 建立了液压支架支护位姿运动学 模型,实现了液压支架各工作空间的相互转换,并基于 BP 神经网络非线性拟合 方法,实现了由位姿空间向驱动空间的最优转换。 (3)建立了基于推移位移与刮板输送机中部槽姿态的液压支架推移位姿直 线度评价模型, 提出了基于推移状态模式识别的液压支架推移位移分段感知方法, 利用多类 SVM 实现了液压支架推移状态模式识别,并通过改进果蝇算法优化了 Kalman 滤波的 Q 和 R 协方差矩阵,采用不同的 Kalman 状态空间转换模型实现 了不同分段内的液压支架推移位移估计。 (4)在实现图像的自适应双树复小波阈值去噪的基础上,基于病毒入侵搜 索算法改进了 EPnP 相对位姿估计算法,感知液压支架与采煤机相对位姿,获取 采煤机位置信息与截割干涉状态,并基于按序跟机与按需调节的两步调控方法, 实现了液压支架自主跟机控制。 本文设计并研发了具有自主跟机功能的液压支架控制系统,并在中国矿业大 学智能采掘装备实验室和中煤张家口煤矿机械有限责任公司进行了地面实验, 实 验结果表明 该自主跟机控制系统能够根据液压支架与采煤机位置与截割干涉状 态的变化,实现液压支架的自主调控,提高了液压支架跟机控制的智能化水平。 本课题研究成果对于推动“少人化”或“无人化”开采具有重要意义。 该论文有图 89 幅,表 29 个,参考文献 126 篇。 关键词关键词液压支架;位姿感知;自主跟机;智能控制 万方数据 II Abstract The less-humanized or unmanned fully mechanized coal mining working face is becoming extremely important for safety and high efficiency production. As one of key equipments in fully mechanized coal mining working face, the automation and intelligent level of hydraulic support directly affects safty production and coaling mining efficiency of the entire coal mining working face, and autonomous following mining machine AFM is the essential condition for implementing intelligent control of hydraulic support, while only the automatic following machine under fixed program mode is realized so far, it is difficult to satisfy the requirements of intelligent control of hydraulic support considering complex and variable coal seam geological conditions, and working condition of mining. Thus, it is necessary to study on the key technologies of AFM to improve the intelligent level, and provide more efficient and reliable security support of fully mechanized coal face while reducing on-site staff. Aimed at AFM control of hydraulic support, this paper researches pose monitoring, following machine strategy and autonomic regulation, and main results are listed as follows 1 On the basis of structure analyzing of hydraulic support, this paper researches AFM mechanism, builds the AFM model, constructs the overall architecture of AFM control system, designs AFM control system. 2 Normal and abnormal SP of hydraulic support are analyzed, workspaces and corresponding variables are designed and defined, the kinematic model of SP is built and the transation between workspaces is realized, and optimal transation from pose space to driving space is implemented based on BP neural network nonlinear fitting . 3 The fused uation model, which is composed of least squared straightness uation based on pushing displacement, and straightness uation based on middle trough orientation, is built. A multi-segmental sensing approach based on pushing state recognization is proposed, and the multi-class support vector machine SVM is built to implement the pushing state recongintion. What’s more, througth improved fruit fly optimization algorithm IFOA, the Q and R of Kalman filter are modified to precisely estimate pushing displacement using different state space model for different segments. 4 On the basis of image thresholding through an adaptive dual-tree wavlet image denoising algorithm, EPnP algorithm is modified by virus conloy search VCS 万方数据 III to obtain the position of mining machine and cutting interference state. Finally, AFM control system is implemented through sequential following machine and on-demand adjustment based control . In this paper, the controller which is capable of autonomous following mining machine is designed and developed, and it is tested in intelligent mining equipment laboratory of China University of Mining and Technology and China Coal Zhangjiakou Coal Mining Machinery Co.,Ltd. The experiment results indicate that AFM control system implemens autonomous following mining with the change of position of mining machine and cutting interference status, and improves the intelligent level of following machine control of hydraulic support. It has great significance for promoting less-humanized or unmanned coal mining. In this dissertation, there are 89 figures, 29 tables and 126 references. Keywords Hydraulic Support; Pose sensing; Autonomous Following Mining Machine; Intelligent Control 万方数据 IV 目目 录录 摘摘 要要.................................................................................................................................... I 目目 录录................................................................................................................................. IV 图清单图清单.............................................................................................................................. VIII 表清单表清单.............................................................................................................................. XIII 变量注释表变量注释表 ....................................................................................................................... XV 1 绪论1 绪论.................................................................................................................................... 1 1.1 课题来源及背景 ............................................................................................................. 1 1.2 课题研究现状与存在问题 ............................................................................................. 1 1.3 课题主要研究内容与方法 ............................................................................................. 5 1.4 课题研究意义 ................................................................................................................. 8 2 液压支架自主跟机控制系统架构设计液压支架自主跟机控制系统架构设计 ........................................................................... 9 2.1 液压支架基本结构 ......................................................................................................... 9 2.2 液压支架自主跟机原理及模型 ................................................................................... 12 2.3 液压支架自主跟机控制系统架构 ............................................................................... 14 2.4 液压支架自主跟机控制系统设计 ............................................................................... 16 2.5 本章小结 ....................................................................................................................... 23 3 液压支架支护位姿运动学分析液压支架支护位姿运动学分析 ..................................................................................... 24 3.1 液压支架的支护位姿分析 ........................................................................................... 24 3.2 液压支架的工作空间定义 ........................................................................................... 27 3.3 液压支架支护位姿的运动学建模 ............................................................................... 28 3.4 基于 BP 神经网络的液压支架支护位姿逆运动学分析 ............................................ 36 3.5 本章小结 ....................................................................................................................... 44 4 液压支架推移位姿感知方法研究液压支架推移位姿感知方法研究 ................................................................................. 45 4.1 液压支架推移位姿 ....................................................................................................... 45 4.2 液压支架推移位姿直线度评价模型构建 ................................................................... 47 4.3 基于推移状态模式识别的推移位移感知方法研究 ................................................... 49 4.4 基于改进 Kalman 滤波的液压支架推移位移估计 .................................................... 59 4.5 本章小结 ....................................................................................................................... 67 万方数据 V 5 液压支架自主跟机决策与调控方法研究液压支架自主跟机决策与调控方法研究 ..................................................................... 68 5.1 液压支架自主跟机决策方法 ....................................................................................... 68 5.2 基于自适应双树复小波的图像去噪方法研究 ........................................................... 69 5.3 基于启发式 EPnP 的相对位姿估计方法研究 ............................................................ 80 5.4 液压支架自主跟机调控方法研究 ............................................................................... 89 5.5 本章小结 ....................................................................................................................... 96 6 实验研究实验研究 ......................................................................................................................... 98 6.1 实验平台总体架构 ....................................................................................................... 98 6.2 液压支架支护位姿感知实验分析 ............................................................................. 100 6.3 液压支架推移位姿感知实验分析 ............................................................................. 103 6.4 液压支架自主跟机控制实验分析 ............................................................................. 106 6.5 本章小结 ..................................................................................................................... 114 7 总结与展望总结与展望 ................................................................................................................... 115 7.1 总结 ............................................................................................................................. 115 7.2 论文创新点 ................................................................................................................. 116 7.3 展望 ............................................................................................................................. 116 参考文献参考文献 ........................................................................................................................... 117 作者简历作者简历 ........................................................................................................................... 127 学位论文原创性声明学位论文原创性声明 ....................................................................................................... 129 学位论文数据集学位论文数据集 ............................................................................................................... 131 万方数据 VI Contents Abstract ................................................................................................................................ II Contents ............................................................................................................................. VI List of Figures ................................................................................................................. VIII List of Tables ................................................................................................................... XIII List of Variables................................................................................................................ XV 1 Introduction ....................................................................................................................... 1 1.1 Project Origin and Background ....................................................................................... 1 1.2 Research Status and Problems ......................................................................................... 1 1.3 Research Contents and s ...................................................................................... 5 1.4 Project Problems and Research Significance ................................................................... 8 2 Arechietecture Design of AFM Control System for Hydraulic Support ............................. 9 2.1 Basic Structure of Hydraulic Support .............................................................................. 9 2.2 Principle and Mathmatic Model of Autonomous Following Mining Machine.............. 12 2.3 Archtecture of AFM Control System for Hydraulic Support ......................................... 14 2.4 Autonomous Following Mining Machine Control System Designing of Hydraulic Support ........................................................................................................................... 16 2.5 Summary ........................................................................................................................ 23 3 The Kinematics Analysis for Supporting Pose of Hydraulic Support........................ 24 3.1 Analzing on Supporing Pose of Hydraulic Support ....................................................... 24 3.2 Working Space Definition of Hydraulic Support ........................................................... 27 3.3 Kinematics Modeling of SP for Hydraulic Support ....................................................... 28 3.4 Inverse Kinematics Analysis of Supporting Pose for Hydraualic Support Based on BP Neural Networks ...................................................................................................... 36 3.5 Summary ........................................................................................................................ 44 4 Research on the Sensing Approach for Pushing and Moving Pose of Hydraulic Support................................................................................................................................ 45 4.1 Pushing and Moving Pose of Hydraulic Sup