保水开采固液耦合相似模拟非亲水材料的研制及应用.pdf
国家重点基础研究发展规划973 计划(2015CB251600)资助 教育部新世纪优秀人才支持计划(NCET-12-0957)资助 江苏省高校“青蓝工程”项目资助 中央高校基本科研业务费专项基金2014YC01资助 江苏省普通高校研究生科研创新计划(CXZZ13_0946)资助 江苏省优势学科项目资助 硕士学位论文 保水开采固液耦合相似模拟非亲水材料的 研制及应用 The Development and Application of Solid-liquid Coupling Similar Stimulation Non-hydrophilic Material for Water-protection Mining 作者汪 辉 导师马立强 教授 中国矿业大学 二○一五年五月 万方数据 中图分类号 TD355 学校代码 1029 UDC 622 密 级 公开 中国矿业大学 硕士学位论文 保水开采固液耦合相似模拟非亲水材料的研制及 应用 The Development and Application of Solid-liquid Coupling Similar Stimulation Non-hydrophilic Material for Water-protection Mining 作 者 汪 辉 导 师 马立强 申请学位 工学硕士 培养单位 矿业工程学院 学科专业 采矿工程 研究方向 保水开采 答辩委员会主席 牟宗龙 评 阅 人 范钢伟、王少义 二○一五年五月 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 万方数据 论文审阅认定书论文审阅认定书 研究生 汪 辉 在规定的学习年限内,按照研究生培养方案的要 求,完成了研究生课程的学习,成绩合格;在我的指导下完成本学位 论文,经审阅,论文中的观点、数据、表述和结构为我所认同,论文 撰写格式符合学校的相关规定, 同意将本论文作为学位申请论文送专 家评审。 导师签字 年 月 日 万方数据 致谢致谢 五月似火,凤凰花开,又到一年离别季。今年的伤感之情来的格外强烈,往 年或送别同学,或送别同门,今年却将送别自己。我于 2012 年进入矿大学习, 至今已有 3 个年头,暮然回首,早已不再是入校时的懵懂少年。这期间经历了许 多难忘的事情,回想起来,却不知从何谈起,只剩下莫名的感动、感恩和不舍。 借此论文定稿之际,向帮助、关心我的老师、同学、同门、朋友.致以最诚 挚的谢意。 衷心的感谢恩师马立强教授在学业、生活上的谆谆教诲和无私帮助。马老师 真诚谦和的做人品质,严谨的治学态度,开拓创新的精神,把握全局的能力,忘 我的工作精神,是导师留给学生我最宝贵的财富,在此,我再次向恩师表示最衷 心的感谢 感谢同门师兄弟对我的支持、理解和包容和谐、轻松、友爱的同门之情在 当今社会显得更为难得,也让我更加不舍和留恋 感谢父母这么多年来的默默付出和支持, 养育之恩无以回报, 唯以勉励自己, 不断进取感谢哥汪扬对我的关心、鼓励和殷切的期望 感谢中国矿业大学 3 年来对我培养 最后,感谢各位评阅专家、学者在百忙之中审阅本论文,并殷切希望得到您 的指正和赐教 汪 辉 2015 年 5 月 6 日 万方数据 I 摘要摘要 本论文基于石圪台煤矿含、隔水层及覆岩地质特征,利用流固耦合相似模拟 理论原理研制保水开采非亲水性相似模拟材料。 利用研制的非亲水性相似模拟材 料模拟浅埋近距煤层重复采动覆岩裂隙发育规律,探索导水通道的导通规律。通 过采用物理模拟,对隔水层覆岩移动特征及裂隙发育规律、上下两煤层间覆岩厚 度因素对导水裂隙发育的影响方面进行了分析, 结合石圪台煤矿水资源测孔的测 定结果,验证了非亲水性相似材料物理模拟的可靠性。主要研究成果如下 (1)通过对隔水层力学性能进行测试,隔水层破坏形式为拉伸变坏,其破 断具有突然性, 在水平拉伸变形ε不超过0.200.24, 隔水层就能够保持完整, 具有较强的隔水能力。 (2)利用流-固耦合相似原理,研制保水开采流固耦合相似模拟试验中的隔 水层材料,寻找合理的非亲水材料配比。选取砂子和石膏作为相似模拟材料的骨 料,凡士林和硅油作为胶结剂。研究了材料的水理性,包括亲水性、渗透性、弥 合性、流固耦合软化效应以及材料的基本力学性质测试,包括材料的抗压强度和 塑性,最终发现了满足隔水层材料的合理配比,即砂子和石膏的重量比例介于 61~81 之间,骨料和胶结剂重量比例介于 71~91 之间,凡士林和硅油重量比 例介于 11~31 之间。同时利用砂子、石膏和碳酸钙作为原材料,配制了 63 种 不同配比的基岩相似模拟材料,测定了每种材料的单轴抗压强度、抗拉强度、抗 剪强度,丰富了实验室物理模拟采动覆岩运动相似材料的选择种类。 (3)采用物理模拟的方法,考虑层采比、采高、上下煤层开切眼错距等因 素的变化,模拟了不同开采条件下上下煤层开切眼、采空区中部、停采线侧的覆 岩受采动影响垮落、裂隙发育、弯曲下沉等运动规律。同时,测定了上下煤层开 切眼侧、采动侧以及停采线侧的导水裂隙发育高度。 (4)根据现场水位观测孔观测结果分析,并将结果与运用非亲水性相似材 料的物理模拟结果对比, 说明物理模拟结果与现场采动导水裂隙发育规律相吻合, 达到了实验室物理模拟对非亲水性相似材料的要求。 该论文有图 65 幅,表 18 个,参考文献 75 篇。 关键词关键词隔水层;相似模拟材料;重复开采;导水裂隙 万方数据 II Abstract Based on Shigetai MINE containing impermeable layer and overlying strata geological characteristics, the use of fluid-structure coupling simulation similar theoretical principles developed water conservation mining similar simulation of non-hydrophilic material. Development of the use of non-hydrophilic material similar simulation simulation Shallow close seams repeated mining overburden fractured law, the law of the guide to explore the conduction of water channels. By using physical simulation, impermeable layer overlying strata movement characteristics and fractured law, between the upper and lower Overburden thickness factors affect the hydraulic conductivity fractured aspects were analyzed, with the measurement results of water testing Shigetai MINE hole to verify the non-hydrophilic material physics simulation similar reliability. The main results are as follows 1 The damage of aquifuge is in the of tensile failure that breaks with the sudden by the test of mechanical properties, and aquifuge can remain integrity and have a strong ability of water-resisting property as long as the level of tensile deation ε does not exceed 0.200.24. 2 With the fluid-solid coupling similar principle, composite materials of aquifuge are developed by physical simulation test for fluid-solid coupling in water-preserved mining and a rational proportion of non-hydrophilic is researched. Sand and gypsum are adopted as the aggregate of physical simulation materials, while vaseline and silicone oil are served as cementing agent. Firstly, water-physical properties of the material, including water absorption, permeability, distensibility and fluid-solid coupling softening effect, have been studied. Then, basic mechanical property of the material, plasticity has been tested on this basis. Finally, a series of rational proportions fit for aquifuge materials have been discovered, i.e. the weight ratios of sand and gypsum is between 51 and 71, aggregate and cementing agent between 61 and 81, and vaseline and silicone oil between 11 and 31. Meanwhile, using sand, gypsum and calcium carbonate as a raw material, we ulated 63 different proportions of bedrock similar simulation material measured each material uniaxial compressive strength, tensile strength, shear strength, rich physics laboratory select the type of simulated mining overburden strata movement similar materials. Meanwhile, to further seek full physical simulation similar stress - strain curves of the foundation. 3 Making use of physical simulation , considering changing layer 万方数据 III production ratio, mining height, the upper and lower seams open cut in the wrong distance and other factors, the simulation under different mining conditions Seams cut in the upper and lower central gob stopping line side of overburden rock caving mining influence, fractured, bent by the movement of subsidence. Meanwhile, the determination of the upper and lower seams opening cut in the side, the mining side and the side of stopping line height of water flowing fractured development. 4 According to the field level observation ,hole observations analysis and comparison of the results with the physical simulation results using non-hydrophilic similar materials described physical simulation with the field of Water fractured mining law coincide, reaching non-physical simulation laboratory similar hydrophilic material requirements. There are 65 diagrams, 18 tables, 75 references in the thesis. Key words impermeable layer; a similar material simulation; repeated mining; water flowing fractured 万方数据 IV 目录目录 摘要摘要................................................................................................................................ I 目录目录............................................................................................................................. IV 图清单图清单...................................................................................................................... VIII 表清单表清单...................................................................................................................... XIII 变量注释表变量注释表 ............................................................................................................... XV 1 绪论绪论............................................................................................................................ 1 1.1 问题的提出 ............................................................................................................. 1 1.2 国内外研究现状与分析 ......................................................................................... 2 1.3 主要研究内容 ......................................................................................................... 9 1.4 拟采取的研究方法与研究路线 ........................................................................... 10 2 神东矿区地质条件及隔水层力学参数神东矿区地质条件及隔水层力学参数 ................................................................. 11 2.1 神东矿区浅埋煤层地质概况 ................................................................................ 11 2.2 水文地质特征 ........................................................................................................ 12 2.3 岩土物理力学性质测试 ........................................................................................ 13 2.4 本章小结 ................................................................................................................ 17 3 物理模拟相似材料的研制物理模拟相似材料的研制 ...................................................................................... 19 3.1 流固耦合相似模拟理论 ....................................................................................... 19 3.2 隔水层相似模拟材料的研制 ................................................................................ 19 3.3 基岩相似模拟材料的研制 .................................................................................... 28 3.4 本章小结 ............................................................................................................... 41 4 物理模拟研究浅埋近距离煤层采动裂隙发育规律物理模拟研究浅埋近距离煤层采动裂隙发育规律 .............................................. 42 4.1 物理模拟方案设计 ............................................................................................... 42 4.2 模型开挖 ............................................................................................................... 48 4.3 导水裂隙带发育高度对比 ................................................................................... 71 4.4 工作面采动覆岩导水通道现场实测 .................................................................... 71 4.5 本章小结 ................................................................................................................ 73 5 主要结论主要结论 .................................................................................................................. 75 5.1 主要结论 ............................................................................................................... 75 万方数据 V 参考文献参考文献 ..................................................................................................................... 77 作者简历作者简历 ..................................................................................................................... 83 学位论文原创性声明学位论文原创性声明 ................................................................................................. 84 学位论文数据集学位论文数据集 ......................................................................................................... 85 万方数据 VI Contents Abstract ........................................................................................................................ II Contents ..................................................................................................................... VI List of Figures ......................................................................................................... VIII List of Tables ........................................................................................................... XIII List of Variables ........................................................................................................ XV 1 Introduction ............................................................................................................... 1 1.1 Problem Introduction ............................................................................................... 1 1.2 Current Research Status ........................................................................................... 2 1.3 Main Research Contents .......................................................................................... 9 1.4 Research Approaches and Procedure ..................................................................... 10 2 Geological Conditions and Aquifuge Mechanical Parameters in Shendong Mining Region ............................................................................................................ 11 2.1 Shallow Buried Close Distance Coal Seam Geological Survey in Shendong Mining Area ................................................................................................................. 11 2.2 Hydro-geological Characteristics ........................................................................... 12 2.3 Soil Physical and Mechanical Properties Test ....................................................... 13 2.4 Chapter Summary .................................................................................................. 17 3 The Development of Similar Materials for Physical Simultion .......................... 19 3.1 Liquid-Solid Coupling Similar Simalation Theory ................................................ 19 3.2 The Development of Aquifuge Similar Simulation Material ................................. 19 3.3 The Development of Rock Similar Simulation Material ....................................... 28 3.4 Chapter Summary .................................................................................................. 41 4 The Close Fissures Law Study of Shallow Seam Mining in Physical Simulation ........................................................................................................................ 42 4.1 Physical Simulation Plan Design ........................................................................... 42 4.2 Model Dug ............................................................................................................. 48 4.3 The Height Comparison of Water Flowing Fractured Zone .................................. 71 4.4 Working face mining strata water channel field measurement .............................. 71 4.5 Chapter Summary .................................................................................................. 73 5 Main Conclusions .................................................................................................... 75 5.1 Main Conclusions .................................................................................................. 75 万方数据 VII References ................................................................................................................... 77 Author’s Resume ........................................................................................................ 83 Declaration of Thesis Originality.............................................................................. 84 Thesis Data Collection ............................................................................................... 85 万方数据 VIII 图清单图清单 图序号 图名称 页码 图 1-1 研究技术路线 10 Figure 1-1 Research technical route 10 图 2-1 岩石力学试验系统 13 Figure 2-1 Rock mechanics test system 13 图 2-2 隔水层样本 14 Figure 2-2 Aquifuge sample 14 图 2-3 TST-55 渗透仪 15 Figure 2-3 TST-55 permeameter 15 图 2-4 隔水层抗压试件 15 Figure 2-4 Water-resisting layer compressive specimens 15 图 2-5 单轴抗压试验应力-应变曲线 16 Figure 2-5 Uniaxial compressive test stress-strain curve 16 图 2-6 三趾马红土抗拉试件 16 Figure 2-6 Hipparion red clay tensile specimen 16 图 2-7 粘土隔水层拉应力-应变关系曲线 17 Figure 2-7 ‘Clay aquiclude stress-strain curve 17 图 3-1 隔水层模拟的原材料 20 Figure 3-1 Water-resisting layer simulation o