综采放顶煤采场厚层坚硬顶板稳定性分析及应用.pdf
分类号分类号TDTD3 31 1密密级级 公公 开开 U D CU D C 单位代码单位代码 1042410424 学学 位位 论论 文文 综采放顶煤采场厚层坚硬顶板稳定性综采放顶煤采场厚层坚硬顶板稳定性 分析及应用分析及应用 史史红红 申请学位级别申请学位级别博士学位博士学位专业专业名名称称采矿工程采矿工程 指导教师姓名指导教师姓名姜姜 福福 兴兴职职称称教教授授 山山 东东 科科 技技 大大 学学 二零零五年四月二零零五年四月 论文题目论文题目 综采放顶煤采场厚层坚硬顶板稳定性分析及应用综采放顶煤采场厚层坚硬顶板稳定性分析及应用 作者姓名作者姓名 史史红红入学时间入学时间20022002 年年 9 9 月月 专业名称专业名称 采矿工程采矿工程研究方向研究方向岩体力学与工程岩体力学与工程 指导教师指导教师 姜福兴姜福兴职职称称教教授授 谭云亮谭云亮教教授授 杨永杰杨永杰教教授授 马其华马其华副副 教教 授授 论文提交日期论文提交日期2005 年年 4 月月 论文答辩日期论文答辩日期2005 年年 5 月月 授予学位日期授予学位日期 STUDYANDAPPLICATION ON STABILITY OF HARD AND MASSIVE OVERLYING STRATA IN FULLY MECHANIZED SUBLEVEL CAVING FACE ADissertation ted in fulfillment of the requirements of the degree of DOCTOR OF PHILOSOPHY from Shandong University of Science and Technology by Shi Hong Supervisor Professor Jiang Fuxing College of Natural Resources and Environmental Engineering April 2005 声声明明 本人呈交给山东科技大学的这篇博士学位论文, 除了所列参考文献和世所公认的文 献外, 全部是本人在导师指导下的研究成果。 该论文资料尚没有呈交于其它任何学术机 关作鉴定。 博士生签名博士生签名 日日期期2005 年 4 月 10 日 AFFIRMATIONAFFIRMATION Ideclarethatthisdissertation,tedinfulfillmentofthe requirements for the award of Doctor of Philosophy in Shandong University of Science and Technology, is wholly my own work unless referenced of acknowledge. The document has not been ted for qualification at any other academic institute. SignatureSignature DateDate April 10, 2005 山东科技大学博士学位论文摘要 4 摘摘要要 综采放顶煤技术经过近二十多年的迅速发展, 无论是在理论研究还是工程技术方面, 已经达到了很高的水平,但仍然存在很多问题尚未解决。针对综放采场顶板运动稳定性 的特点,论文重点解决初次来压阶段综放采场厚层坚硬顶板的运动规律及其“关键性” 问题,以及初次来压阶段和正常推进阶段顶煤放出率的变化对厚层坚硬顶板结构稳定性 的影响。结合工程实际,应用论文研究成果,对河南义马常村矿巨厚砾岩孤岛综放面顶 板结构的稳定性、综放工作面“异常压力”的产生机理进行研究。 在初次来压阶段,采用两端嵌固梁考虑体积力的力学模型,利用弹性理论分析了厚 层坚硬岩层的应力分布。厚层坚硬岩层的运动方式分别为沿中间弱面被剪开的分层运 动;全厚度压剪破坏;弯拉破坏。通过力学分析,得到了上述三种运动方式的力学判据 和判断曲线。得出了厚层坚硬岩层分层运动后,对其他岩层的控制作用减弱,其“关键 性”下降的结论。现场实例检验表明,此方法用于老顶初次断裂方式和步距的预测,比传 统的简单加线载荷、用材料力学进行分析的方法更符合厚层坚硬顶板的实际情况,能对 “关键层”在运动过程中的破断方式做出准确的判断。 针对综放采场顶板结构的运动特点,提出了老顶运动失稳的两种形式,分别为由 于顶煤放出率增加,顶板结构下沉量过大而造成的在运动过程中整体变形失稳;由于工 作面推进跨度增大或上覆岩层存在断层等构造,而造成的局部铰接失稳。建立了初次来 压和周期来压阶段顶板稳定性分析的结构力学模型,利用最小势能原理分析了老顶结构 在初次来压和周期来压阶段保持整体变形稳定的条件;利用强度理论分析了老顶结构在 初次来压和周期来压阶段保持局部铰接稳定的条件。得到了顶板结构保持整体变形稳定 和局部铰接稳定相统一的、与顶煤放出率相关的力学判断准则。 根据综放采场顶板结构运动特点, 详细描述了综放采场上覆岩层中需控岩层的范围。 分析了组成老顶结构的可能岩块数。得到了初次来压和周期来压阶段不同岩性的顶板由 岩层厚度表示的稳定性判断曲线,给出了基于顶煤放出率和关键岩层厚度的岩层运动稳 定性判断方法。 结合具体采场实例,应用并验证了探讨了通过调整顶煤的放出率、利用力学原理预 测运动岩层范围和稳定性,从而实现厚层坚硬顶板工作面的安全开采的可行性。 山东科技大学博士学位论文摘要 5 通过对地质、开采、力学等因素的分析,利用上述综放采场厚层坚硬顶板动态稳定 性的研究结论,探讨了异常压力产生的机理,为采场支架选型和现场控制“异常压力” 提供理论依据。 关键词关键词综放采场,厚层坚硬顶板,破断规律,顶煤放出率,动态稳定性 山东科技大学博士学位论文摘要 6 Abstract The theory research and the engineering technology of fully-mechanized sublevel caving face have achieved through many year’s development. But there are a lot of problems which are not solved. Aimed at the stability characteristic of fully-mechanized sublevel caving face, the key problems which this paper will solve are as follows the first one is the movement rule and key role of hard and massive overlying strata of fully-mechanized sublevelcavingfaceatfirstweightperiod;thesecondoneisthe relationship between the top coal’s recovery ratio and the stability of roof structure of fully-mechanized sublevel caving face at cyclic weight period. Using the research conclusions mentioned above and the engineering data, the stability of the isolated fully-mechanized sublevel caving face under weighty conglomerate rock of Changcun Coal Mine in Henan province and the mechanism of “Abnormal Pressure” of fully mechanized sublevel caving face are studied. Based on the mechanics model of considering the gravity of fixed beam as the centralizing force, there are three kinds of movement mode of hard and massive overlying strata at the first weight period, namely, the shearing with and without the weak interbedding to directly cause the key falling of strata; rupture resulting from pressure and shearing in the whole strata; and rupture of the strata close to two ends of beam. This paper presents the mechanics judgment modes of the possible movement of the hard and massive strata by analyzing the breaking patterns of the hard roof of the overlying strata of longwall face using the elasticity theory. In this paper, the structure of the main roof before its initial fracture is viewed as the fixed beam model, and the gravity of the hard roof and its overlying soft strata is considered as the distribution force which acts on the fixed beam. By use of the elastic theory and analyzing the stress field of the fixed 山东科技大学博士学位论文摘要 7 beam under the influence of the gravity, the author suggests the mechanics judgment model of the overlying strata in three kinds of possible movement. The conclusions are that the key role of hard and massive overlying strata after their shearing. According to our study, the analysis of the breaking patternsoftheroofofthehardandmassivestratabasedonthe consideration of its gravity, compared with the simple uni stress way which is usually used, is more likely to show the true situation of the strata and the accurate breaking pattern of the key layer in its movement. This can help provide the theoretical basis for controlling the hard and massive strata in mining engineering. Field experiments have also shown clearlythatthisisusefulforthepredictionoftheinitial breaking and step of the main roof of the hard and massive strata. Based on the roof movement characteristic of fully-mechanized sublevel caving face, two kinds of losing stability mode of roof are brought forward, Namely, the losing stability of the whole deation of roof structure because of the increasing of the top coal’s recovery ratio; the losing stability of part contact of the main roof because of the increasing of roof span and some fabrics such as faultage in overlying strata. The mechanics models analyzing roof stability at first weight and cyclic weighting period are established. Based on the structure stability theory and the strength theory, two kinds of limited convergence maintaining the stability of the whole deation of roof structure and the stability of part contact of the mainroofaregained.Accordingtothecomparisonofthetwolimited subsidenceandthesubsidenceofroofbroughtaboutbythemovement situationofroofinthecourseofrotation,theunifyingmechanics conditionsbetweenthestabilityofthewholetransmutationofroof structure and the stability of part contact of the main roof are analyzed and the judgment rules of roof stability with the top coal’s recovery ratio are established. Basedonthemovementcharacteristicofroofstructureinfully- 山东科技大学博士学位论文摘要 8 mechanized sublevel caving face, the range of movement strata of overlying strata is described particularly, and the possible numbers of rock block composing roof structure are analyzed. The stability judgment curves being relative to strata thickness at first weight and cyclic weighting period are gained. The movement stability judgment s of key strata are presented according to the thickness of key strata and the top coal’s recovery ratio. The conclusions are that the thickness of key strata is the main factor influencing the stability of the whole transmutation of roof structure, the intensity and thickness of key strata, the friction characteristic of the interfacebetween twoblocks rockarethe mainfactorsinfluencingthe stability of part contact of the main roof. Based on an example of fully- mechanized sublevel caving face, the feasibility of the s forecasting the range of movement strata and the stability of roof structure according to adjusting the top coal’s recovery ratio and using mechanics theory is tested. Aimed at phenomena of support’s being pressed to burst or be unable to work in a few fully mechanized sublevel caving longwall faces and based on analyzing the factors of geology, mining, mechanics and so on, the mechanism of“AbnormalPressure”offullymechanizedsublevelcavingfaceis discussed. KeyKeywordswordsfully-mechanizedsublevelcavingface,hardandmassive overlying strata, Rupture Regularity, the top coal’s recovery ratio, roof dynamic stability 山东科技大学博士学位论文目录 I 目目录录 1绪论绪论∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1 1.1 问题的提出∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1 1.2 文献综述及国内外研究现状∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3 1.3 放顶煤开采顶板结构课题中需进一步研究的问题∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙11 1.4 本文的研究内容和研究方法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙11 1.5 本章小结∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙13 2 初次来压阶段综放采场上覆厚层坚硬岩层的运动形式及其控制初次来压阶段综放采场上覆厚层坚硬岩层的运动形式及其控制∙∙∙∙∙∙∙∙∙∙∙∙∙14 2.1 以往研究上覆岩层运动与破坏形式的成果∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙14 2.2 综放采场上覆厚层坚硬岩层运动的力学模型和力学分析∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙16 2.3 综放采场上覆厚层坚硬岩层的运动和破坏形式的力学判断准则∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙21 2.4 综放采场上覆厚层坚硬岩层运动方式的判断方法和应用∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙27 2. 5 本章小结∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙37 3 综放采场上覆厚层坚硬顶板结构动态稳定性的力学分析综放采场上覆厚层坚硬顶板结构动态稳定性的力学分析∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙38 3.1 结构稳定理论及分析方法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙38 3.2 初次来压阶段综放采场上覆厚层坚硬顶板结构的动态稳定性判断准则∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙39 3.3 周期来压阶段综放采场上覆厚层坚硬顶板结构的动态稳定性判断准则∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙47 3.5 本章小结∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙66 4 综放采场上覆厚层坚硬顶板结构的动态稳定性分析在工程中的应用综放采场上覆厚层坚硬顶板结构的动态稳定性分析在工程中的应用 方法方法 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙68 4.1 综放工作面顶板结构特点和运动特点∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙68 4.2 综放采场顶板结构的动态稳定性判据的应用方法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙74 4.3 顶板结构动态稳定性的影响因素∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙83 4.4 本章小结∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙90 5 巨厚砾岩下孤岛综放面顶板结构的动态稳定性分析巨厚砾岩下孤岛综放面顶板结构的动态稳定性分析 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙92 5.1 河南义马 21072综放工作面顶板结构结构和运动特点∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙92 5.2 河南义马 21072综放工作面顶板结构的动态稳定性分析∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙100 5.3 本章小结∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙110 山东科技大学博士学位论文目录 II 6 综放采场顶板结构异常压力的产生机理综放采场顶板结构异常压力的产生机理 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙112 6.1 综放采场异常压力的定义∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙112 6.2 综放采场异常压力的产生机理∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙116 6.3 本章小结∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙122 7 主要研究成果与结论主要研究成果与结论 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙123 致谢致谢 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙125 攻读博士期间发表论文和参加的科研项目攻读博士期间发表论文和参加的科研项目∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙126 参考文献参考文献 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙127 山东科技大学博士学位论文目录 III Contents 1 Introduction∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1 1.1 Research Background and Significance∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1 1.2 History and Present Study∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3 1.3 Problems on Roof Structure of Fully Mechanized Sublevel Caving Face∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙11 1.4 Research and content∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙11 1.5 Summary∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙13 2 Movement Modes and Control of Hard and Massive Overlying Strata in Fully Mechanized Sublevel Caving Face at First Weight Period∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 14 2.1 ResearchAchievement on Movement Modes of Overlying Strata∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙14 2.2 Mechanics Models and MechanicsAnalysis of Movement of Hard and Massive Overlying Strata of Fully Mechanized Sublevel Caving Face∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙16 2.3 Mechanics Judgment Rules of Movement of Hard and Massive Overlying Strata∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙21 2.4 Judgment s andApplication of Hard and Massive Overlying Strata∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙27 2.5 Summary∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙37 3 MechanicsAnalysis On Dynamic Stability of Hard and Massive Overlying Strata in Fully Mechanized Sublevel Caving Face∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙38 3.1 Structure Stability Theory andAnalysis s∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙38 3.2 Dynamic Stability Judgment Rules of Fully Mechanized Sublevel Caving Face at First Weight Period∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙39 3.3 Dynamic Stability Judgment Rules of Fully Mechanized Sublevel Caving Face at cyclic Weight Period∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙47 3.4 Summary∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙66 4 Application onAnalysis On Dynamic Stability of Hard and Massive Overlying Strata in Fully Mechanized Sublevel Caving Face∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙68 4.1 Movement Characteristic and Structure Characteristicof Fully Mechanized Sublevel Caving Face∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙68 4.2 Dynamic Stability of Fully Mechanized Sublevel Caving Face∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙74 4.3 factors influencing stability of roof structure∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙83 4.4 Summary∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙90 5 Dynamic Stability of Isolated Fully Mecha